58,006 research outputs found

    Initialization of 3D Pose Graph Optimization using Lagrangian duality

    Get PDF
    Pose Graph Optimization (PGO) is the de facto choice to solve the trajectory of an agent in Simultaneous Localization and Mapping (SLAM). The Maximum Likelihood Estimation (MLE) for PGO is a non-convex problem for which no known technique is able to guarantee a globally optimal solution under general conditions. In recent years, Lagrangian duality has proved suitable to provide good, frequently tight relaxations of the hard PGO problem through convex Semidefinite Programming (SDP). In this work, we build from the state-of-the-art Lagrangian relaxation [1] and contribute a complete recovery procedure that, given the (tractable) optimal solution of the relaxation, provides either the optimal MLE solution if the relaxation is tight, or a remarkably good feasible guess if the relaxation is non-tight, which occurs in specially challenging PGO problems (very noisy observations, low graph connectivity, etc.). In the latter case, when used for initialization of local iterative methods, our approach outperforms other state-ofthe- art approaches converging to better solutions. We support our claims with extensive experiments.University of Malaga travel grant, the Spanish grant program FPU14/06098 and the project PROMOVE (DPI2014-55826-R), funded by the Spanish Government and the "European Regional Development Fund". Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Face Alignment Assisted by Head Pose Estimation

    Full text link
    In this paper we propose a supervised initialization scheme for cascaded face alignment based on explicit head pose estimation. We first investigate the failure cases of most state of the art face alignment approaches and observe that these failures often share one common global property, i.e. the head pose variation is usually large. Inspired by this, we propose a deep convolutional network model for reliable and accurate head pose estimation. Instead of using a mean face shape, or randomly selected shapes for cascaded face alignment initialisation, we propose two schemes for generating initialisation: the first one relies on projecting a mean 3D face shape (represented by 3D facial landmarks) onto 2D image under the estimated head pose; the second one searches nearest neighbour shapes from the training set according to head pose distance. By doing so, the initialisation gets closer to the actual shape, which enhances the possibility of convergence and in turn improves the face alignment performance. We demonstrate the proposed method on the benchmark 300W dataset and show very competitive performance in both head pose estimation and face alignment.Comment: Accepted by BMVC201

    Cascaded 3D Full-body Pose Regression from Single Depth Image at 100 FPS

    Full text link
    There are increasing real-time live applications in virtual reality, where it plays an important role in capturing and retargetting 3D human pose. But it is still challenging to estimate accurate 3D pose from consumer imaging devices such as depth camera. This paper presents a novel cascaded 3D full-body pose regression method to estimate accurate pose from a single depth image at 100 fps. The key idea is to train cascaded regressors based on Gradient Boosting algorithm from pre-recorded human motion capture database. By incorporating hierarchical kinematics model of human pose into the learning procedure, we can directly estimate accurate 3D joint angles instead of joint positions. The biggest advantage of this model is that the bone length can be preserved during the whole 3D pose estimation procedure, which leads to more effective features and higher pose estimation accuracy. Our method can be used as an initialization procedure when combining with tracking methods. We demonstrate the power of our method on a wide range of synthesized human motion data from CMU mocap database, Human3.6M dataset and real human movements data captured in real time. In our comparison against previous 3D pose estimation methods and commercial system such as Kinect 2017, we achieve the state-of-the-art accuracy

    3-D Hand Pose Estimation from Kinect's Point Cloud Using Appearance Matching

    Full text link
    We present a novel appearance-based approach for pose estimation of a human hand using the point clouds provided by the low-cost Microsoft Kinect sensor. Both the free-hand case, in which the hand is isolated from the surrounding environment, and the hand-object case, in which the different types of interactions are classified, have been considered. The hand-object case is clearly the most challenging task having to deal with multiple tracks. The approach proposed here belongs to the class of partial pose estimation where the estimated pose in a frame is used for the initialization of the next one. The pose estimation is obtained by applying a modified version of the Iterative Closest Point (ICP) algorithm to synthetic models to obtain the rigid transformation that aligns each model with respect to the input data. The proposed framework uses a "pure" point cloud as provided by the Kinect sensor without any other information such as RGB values or normal vector components. For this reason, the proposed method can also be applied to data obtained from other types of depth sensor, or RGB-D camera

    A stabilized adaptive appearance changes model for 3D head tracking

    Get PDF
    A simple method is presented for 3D head pose estimation and tracking in monocular image sequences. A generic geometric model is used. The initialization consists of aligning the perspective projection of the geometric model with the subjects head in the initial image. After the initialization, the gray levels from the initial image are mapped onto the visible side of the head model to form a textured object. Only a limited number of points on the object is used allowing real-time performance even on low-end computers. The appearance changes caused by movement in the complex light conditions of a real scene present a big problem for fitting the textured model to the data from new images. Having in mind real human-computer interfaces we propose a simple adaptive appearance changes model that is updated by the measurements from the new images. To stabilize the model we constrain it to some neighborhood of the initial gray values. The neighborhood is defined using some simple heuristic
    corecore