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Abstract— Pose Graph Optimization (PGO) is the de facto
choice to solve the trajectory of an agent in Simultaneous
Localization and Mapping (SLAM). The Maximum Likelihood
Estimation (MLE) for PGO is a non-convex problem for which
no known technique is able to guarantee a globally optimal
solution under general conditions. In recent years, Lagrangian
duality has proved suitable to provide good, frequently tight re-
laxations of the hard PGO problem through convex Semidefinite
Programming (SDP). In this work, we build from the state-of-
the-art Lagrangian relaxation [1] and contribute a complete
recovery procedure that, given the (tractable) optimal solution
of the relaxation, provides either the optimal MLE solution if
the relaxation is tight, or a remarkably good feasible guess if
the relaxation is non-tight, which occurs in specially challenging
PGO problems (very noisy observations, low graph connectivity,
etc.). In the latter case, when used for initialization of local
iterative methods, our approach outperforms other state-of-
the-art approaches converging to better solutions. We support
our claims with extensive experiments.

I. INTRODUCTION

Pose Graph Optimization (PGO) is at present the most
widespread formulation for Simultaneous Localization and
Mapping (SLAM) in robotics, where it serves as back-end
receiving the relative pose measurements produced by the
front-end from the sensory data. PGO is also widely known
as SE(d)-Synchronization, and it is a pervasive problem in
many other fields, including computer vision and control,
where closely related problems appear in the tasks of struc-
ture from motion [2], [3], extrinsic sensor calibration [4], [5],
sensor network localization [6], etc.

The Pose Graph Optimization problem consists in finding
the trajectory that best explains all the observed relative
poses. This is formulated as a high-dimensional non-convex
optimization problem, which makes finding the optimal
solution to a PGO instance a hard problem in general. On
the other hand, local minima in the context of PGO must be
avoided at any cost as these may lie arbitrarily far from the
optimal solution, rendering the estimate completely useless
(see Fig. 1(b)). When applied at the core of real autonomous
applications, which may involve safety issues (e.g. trans-
portation of passengers, medical interventions, etc.), failing
to converge to the globally optimal solution can thus drive
to unnacceptable catastrophic failures [7].

An important venue of research that has shown remarkably
successful for dealing with hard optimization problem like
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(a) groundtruth (b) chordal init. + GN (c) our init. + GN

Fig. 1. Example of a challenging PGO problem with non-tight (best)
Lagrangian relaxation (see [R?]). The groundtruth is corrupted with severe
rotation noise. The state-of-the-art chordal initialization [8] drives to a local
minimum, whereas the result from our initialization looks appealing when
compared to the original groundtruth. The initialization was refined using
Gauss-Newton (GN). This work exploits the Lagrangian relaxation of [1]
to obtain better initializations for PGO under a larger range of conditions.

PGO is that of relaxation techniques. Relaxing an optimiza-
tion problem is a modeling strategy and kind of an art,
although plenty of references and examples exist in the
literature for many various fields. In the case of PGO, whose
optimization domain is highly non-convex, the relaxation of
the constraints in the original problem yields a new optimiza-
tion problem that is tractable in the sense that its globally
optimal solution can be attained. The most important aspect
about a good relaxation is that, when properly exploited,
it may provide a suboptimal yet remarkably good estimate
that serves as initialization to local iterative methods (which
are the standard tool in the case of PGO [9]–[11]). A good
initialization not only decreases the odds of converging to
local minima, but it usually enables faster convergence. Last
but not least, under certain circumstances, a relaxation may
even provide a certifiably globally optimal solution for the
original hard problem [12].

Our present contribution is depicted in Fig. 2 and adheres
to this same line of research. The outcome of this work will
be a well-founded recovery procedure that exploits a recently
proposed Lagrangian relaxation [1] for the PGO problem
and provides, depending on the case, either a very good
initial guess or even the globally optimal solution for PGO.
In both cases our approach outperforms the state-of-the-art
alternatives, as supported by experiments in Section V.

The following section provides a more exhaustive review
of relaxations in the context of PGO and places our contri-
bution therein.

Several additional results and proofs are given as supple-
mentary material (suppl. material) in [13]. Lastly, we make
the code implementing the procedure available at https:
//github.com/jbriales/PGO-LagInit.
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Fig. 2. Overview of the complete pipeline in this work. Top row (from left to right, relaxation in [1]): The original hard PGO problem [P] is relaxed
to the unconstrained Lagrangian relaxation [R]. The search for the best possible relaxation [R?] results in the dual problem [D]. Bottom row (from right
to left, our recovery procedure): Once the dual optimal solution Λ? is known, we obtain a parameterized family of solutions X̌ for the best Lagrangian
relaxation. We apply a metric upgrade (Sec. IV-A) to obtain the “most feasible” solution X̌

? and finally project (Sec. IV-B) this onto the original domain.

II. RELATED WORK

An important and well-known example of relaxation is
the chordal relaxation in the related (and simpler) prob-
lem of rotation synchronization, also known as linear or
spectral relaxation in other fields [2], [8], [14], [15]. This
relaxation basically drops the constraints in the original
problem yielding a simpler linear problem (or an eigenvalue
problem, depending on the variant) which is easy to solve.
The chordal relaxation is tight only for trivial cases1, but
the suboptimal estimates obtained upon a simple recovery
procedure are good enough to provide an initialization that
works remarkably well for many cases in practice. The state-
of-the-art initialization procedure for PGO [8] applies this
relaxation on the rotational part of the problem to get a good
initial estimate for the complete PGO problem.

A quite recent milestone in the context of PGO has been
the effective exploitation of the Lagrangian relaxation [1],
[17], [18]. In the Lagrangian relaxation the constraints are
substituted by penalization terms. In order to find the best
Lagrangian relaxation the dual problem, which consists in a
Semidefinite Program (SDP) [19], needs to be solved. This
results in a remarkably improved relaxation that empirically
shows to be tight for common PGO instances with interme-
diate noise level.

In the 3D case, the Lagrangian relaxation was presented
and used by Carlone et al. [18] both for performing global
optimality verification and for recovering the globally opti-
mal solution from the SDP solution, as long as the relaxation
holds tight.

In our previous work [1], the Lagrangian relaxation is
exploited again using a different formulation of the PGO
problem. The result was a much smaller dual (SDP) problem
with the same tightness properties for the relaxation. This
novel relaxation was used in [1] for optimality verification
purposes only, providing an important gain in efficiency and
speed w.r.t. the reference method in [18].

In the present work we present an appropriate recovery
procedure that allows us to get a feasible estimate for the
original problem from the solution of the dual (SDP) problem

1When the graph underlying the problem is balanced or a tree [16].

presented in [1]. As for [18], the obtained estimate is globally
optimal if the relaxation is tight.

More importantly, in the case the relaxation is not tight,
our recovery procedure provides a good initialization even
for very challenging problem instances (e.g. high rotational
noise, low connectivity, etc.), surpassing in effectiveness the
state-of-the-art chordal initialization [8]: our initialization
tends to be much closer to the optimum rendering the
convergence from our initial guess more robust and faster.
Note that unlike the chordal initialization procedure [8], our
initialization uses all the information available in the problem
(both rotational and translational).

The key for the success of our procedure is a sensible
heuristic founded on the theory underlying the Lagrangian
relaxation. In [16], a similar heuristic was exploited in the
context of 2D PGO, outperforming all current 2D alternatives
in convergence success. Our main contribution involves
the non-trivial development of the necessary framework for
exploiting this same heuristic in the case of 3D PGO.

III. 3D PGO: MLE AND LAGRANGIAN RELAXATION

This section provides a brief review of the Maximum
Likelihood Estimation formulation for 3D PGO and the
corresponding Lagrangian relaxation presented in [1].

A. Quadratic MLE formulation

PGO is the problem of estimating a model consisting of
n poses (Ri, ti) (the unknowns) from m relative measure-
ments (R̄ij , t̄ij) (the data), both being entities in the special
Euclidean group SE(3) ≡ SO(3) n R3 (for the 3D case). It
is customary to associate this problem to a graph G(V,E),
associating the unknowns to the nodes V = {1, . . . , n} and
the relative measurements to the edges (i, j) ∈ E.

The best model is obtained by maximizing the consistency
of the modelled poses (the nodes) with the relative pose
observations (the edges). Assuming the same (well-founded)
generative noise model argued by Carlone et al. in [18],
namely an isotropic2 Gaussian distribution for t̄ij and an

2Isotropy is an essential condition in the present formulation, non-
isotropic observations can be approximated in a fundamented way by
isotropic distributions as in [20].
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isotropic2 Langevin distribution [21] for R̄ij , the Maximum
Likelihood Estimate (MLE) problem takes the form

f?ML = min
{(Ri,ti)∈SE(3)}

∑
(i,j)∈E

ω2
t̄ij
‖tj − ti −Rit̄ij‖22 (1)

+ω2
R̄ij
‖Rj −RiR̄ij‖2F ,

where the objective function f(·) will be referred to as the
MLE (or primal) objective. The weights ω2

t̄ij
and ω2

R̄ij
are

the scalar information and concentration parameter of the
Gaussian and Langevin distribution, respectively. This MLE
formulation is virtually equivalent to the more traditional
formulations based on the absolute angular error (see [18]
for details), but its quadratic objective makes the Lagrangian
relaxation fairly simpler, yielding a Semidefinite Program
(SDP) as the dual problem.

B. Compact MLE formulation

In our previous work [1] we obtained an equivalent
compact matrix formulation for the MLE problem (1):

Problem P (Primal problem: Matrix form of MLE):

f?ML = min
X

1

2
tr(X>MX) + const. (2)

s.t. X =
[
R1, . . . ,Rn, t1, . . . , tn

]> ∈DP ⊂ R4n×3. (3)

This problem will be also referred to as the primal problem.
Both const. ≥ 0 and a 4n×4n symmetric (positive semidef-
inite) matrix M gather all the data (observations R̄ij and
t̄ij) in the PGO problem [1, Sec. II.A]. We will refer to the
set of feasible X points in the matrix reformulation (2) as
the original or primal domain DP , that is, X ∈ DP only
if the corresponding rotation blocks X [Ri] fulfill

X>[Ri] ≡ Ri ∈ SO(3) ⇐⇒

{
R>i Ri = I3,

det(Ri) = +1.
(4)

No constraints apply on the translation blocks X [ti] of X ,
since X>[ti] ≡ ti ∈ R3.

C. Lagrangian relaxation and dual problem

The MLE (primal) problem [P] is hard only because of
the non-convexity in the rotational constraints, rendering the
Lagrangian relaxation approach a perfect candidate to obtain
a good relaxation of the problem. The Lagrangian relaxation
of Problem [P]3 provides a whole family of relaxations pa-
rameterized by the different weightings (Lagrange multipliers
Λi) employed. From here on, we use the notation Sn to
denote the set of n× n symmetric matrices.

Problem R (Lagrangian relaxation of [P]):

d(Λ) = min
X̆∈R4n×3

1

2
tr(X̆

>
MΛX̆) +

1

2
tr(Λ) + const. (5)

where Λ = blkdiag({Λi}i∈V ,0n), Λi ∈ S3 are the La-
grange multipliers for each orthogonality constraint (4), and
we define the penalized cost matrix MΛ := M−Λ. We use

3After dropping the virtually inactive determinant constraints [22].

X̆ to refer to a point in the relaxed domain X̆ ∈ R4n×3, in
comparison to points in the original domain X ∈DP .

Proof: This result is obtained in [1, Sec. III].
The optimal objective d(Λ) of Problem [R] is, by definition,
a lower bound on f?ML for Problem [P]: d(Λ) ≤ f?ML. The
search for the best possible relaxation [R] is referred to as the
dual problem or, more precisely in our case, the Lagrangian
dual problem:

Problem D (Lagrangian dual problem of [P]):

d? = const.+ max
Λ

1

2
tr(Λ), s.t. M −Λ < 0, (6)

where < 0 denotes the matrix is Positive Semidefinite.

Proof: This result is obtained in [1, Sec. III].
Upon close observation, this problem adopts the form of a
(convex) Semidefinite Program (SDP) [19]. By definition of
the dual problem it holds that d? ≤ d(Λ) ≤ f?ML. Note
that the set of Lagrange multipliers Λi (also called dual
variables) form the domain of the dual problem [D].

The best Lagrangian relaxation [R] is that obtained from
the optimal solution Λ? of the dual problem [D]:

Problem R? (Best Lagrangian relaxation of [P]):

d? = min
X̆∈R4n×3

1

2
tr(X̆

>
M?

ΛX̆) +
1

2
tr(Λ?) + const. (7)

where the optimal penalized cost matrix is M?
Λ = M −Λ?.

Note that since d? = 1
2 tr(Λ?) + const. (from [D]), the op-

timal solution X̆
?

for [R?] fulfills tr((X̆
?
)>M?

ΛX̆
?
) = 0.

M?
Λ < 0 by the constraints of the dual problem [D] so

tr((X̆
?
)>M?

ΛX̆
?
) = 0⇒M?

ΛX̆
?

= 04n×3. (8)

The relation (8) above states the equivalent condition that
the optimal primal solution X̆

?
belongs to the null space or

kernel N = ker(M?
Λ) of the optimal penalized cost matrix

M?
Λ, which can be proved has rank(N ) > 3.

An important property pointed in [1, Sec. IV] is:
Proposition 1 (Nullspace condition): If d? = f?ML, that is,

if the best Lagrangian relaxation [R?] is tight, then

M?
ΛX

? = 04n×3 ⇒X? ∈ ker(M −Λ?), (9)

where X? and Λ? solve [P] and [D], respectively.
Proof: From duality theory [23, Sec. 5], if d? = f?ML

then X?, the optimal solution to [P], is also a solution to
the best Lagrangian relaxation [R?]. The result (9) follows
then from (8).
The best Lagrangian relaxation [R?] has the remarkable
property of turning tight (d? = f?ML) in a wide range of
PGO problem instances, as empirically shown in [1], so the
result (9) holds in many practical instances. This will be
the fundamental relation that we exploit in the subsequent
section for recovering a good (frequently globally optimal)
guess X0 ∈DP for the MLE problem [P] from the solution
Λ? of the dual problem [D].
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IV. RECOVERY: FROM DUAL SOLUTION TO MLE GUESS

This section focuses on the development of a recovery
procedure RECOVER(Λ?) 7→ X0, that is, an approach that
given the optimal solution Λ? of the dual problem [D],
returns a good (feasible) guess X0 for the original problem
[P]. In fact, if the best Lagrangian relaxation [R?] is tight
(d? = f?ML), the obtained guess will directly be the optimal
solution for [P], that is, X? = X0. This is done exploiting
the nullspace condition (9).

In the general case where our relaxation is not tight
(d? ≤ f?ML), the nullspace relation (9) does not hold and
there is no way to recover the optimal solution of the original
problem [P] in a certifiable way4. However, to recover a
good initial guess X0 ∈ DP for [P] we apply a similar
heuristic to Carlone et al. in [16, Sec. V.A.2] stemming
from the nullspace condition (9): The optimal solution X?

should be “close” to the nullspace of M?
Λ. According to this

heuristic, the RECOVER procedure should seek for feasible
candidates X ∈ DP that are close to the nullspace of
M?

Λ. We attain this in a two-step process: First, we look
for the Lagrangian solution X̆

?
that is “most feasible” for

the original problem. We will refer to this operation as a
metric upgrade, for its resemblance with the metric upgrade
proposed in [24]. Second, we project the chosen X̆

?
onto

its “closest” feasible candidate X0 ∈ DP . Both “close”
or “most feasible” are notions that require some underlying
metric to quantify the distance of a general matrix X to the
feasible domain DP of the original problem [P].

Feasibility metric: Given a point X ∈ DP , the con-
straints of the original problem apply only to the rotation
blocks in X: X>[Ri] ≡ Ri ∈ SO(3). Note that

R>i Ri = I3 ⇐⇒ ‖R>i Ri − I3‖2F = 0. (10)

As a result a simple and convenient metric for the feasibility
of a point X is5

‖X‖2P =
1

2

n∑
i=1

‖X [Ri]X
>
[Ri] − I3‖2F . (11)

From here on, we will refer to ‖·‖P as the feasibility metric.
If this metric is zero, the point is feasible for [P]: ‖X‖P =
0⇒X ∈DP .

Next, we briefly describe the two steps involved in the
RECOVER procedure. A overview of the pipeline can be
found in Algorithm 1.

A. Metric upgrade of the nullspace

From here on, when we refer to the nullspace N of
M?

Λ, we will be considering any orthonormal basis V ∈
R4n×k that spans this nullspace6. From here on, we will use
X̌ ≡ X̆

?
to refer to any solution of the best Lagrangian

relaxation [R?]. According to (8), this family of solutions is

4For details on the optimality verification process, see [1], [18].
5Note this metric does not account for the determinant constraint.
6A basis for ker(M?

Λ) is formed by the eigenvectors corresponding to
the k smallest (zero) eigenvalues of the positive semidefinite matrix M?

Λ.

characterized by all possible 4n×3 matrices lying inside the
nullspace N = ker(M?

Λ), which can be parameterized as

X̌ ≡ X̌(K) = V K ≡ {X̆
?
}, K ∈ Rk×3. (12)

Under this parameterization, the task of finding the “most
feasible” point X̌ in the nullspace for the chosen feasibility
metric (11) yields the metric upgrade problem [24]:

X̌
?

= arg min
X̌

1

2
‖X̌‖2P , s.t. X̌ = V K. (13)

The rotation blocks in X̌ can be written as X̌ [Ri] = V [Ri]K
where V [Ri] stands for the i-th 3×k block in V . For a given
nullspace basis V ,

1

2
‖X̌‖2P =

1

2
‖V K‖2P (14)

=
1

2

n∑
i=1

‖V [Ri](KK>)V >[Ri] − I3‖2F ≡ g(KK>

k×k
).

The objective g(·) is referred to as the upgrade objective,
and the equivalent metric upgrade problem we address is:

Problem Upg (Metric upgrade of X̆
?

in [R?]):

g? = min
K∈Rk×3

g(KK>). (15)

This is an unconstrained problem, but the upgrade ob-
jective g(KK>) is a quartic polynomial7 in the entries
of K. Instead, we introduce the auxiliar lifted variable
S = KK> ∈ Sk and address the equivalent formulation:

Problem UpgL (Lifting of metric upgrade problem [Upg]):

g? = min
S∈Sk

g(S), s.t. rank(S) = 3, S < 0. (16)

The equivalent lifted metric upgrade problem [UpgL] is still
not trivial due to the constraints affecting S. However, its
linear relaxation,

g?R = min
S∈Sk

g(S), (17)

is straightforward to solve as the minimization of a quadratic
function8. If the solution S?

R for this linear relaxation (17)
has 3 < rank(S?

R) ≤ k, S?
R is not feasible for the lifted

metric upgrade problem [UpgL]. In this case, we compute
the rank-3 matrix S0 closest to S?

R applying the matrix
approximation lemma9 and use this as an initial estimate to
perform a local iterative search on the constrained problem
(16). This operation can be readily performed using opti-
mization approaches tailored to this kind of problem, e.g. the
Manopt toolbox [25]. Further details are given in the suppl.
material [13]. Note that performing local optimization on
the metric upgrade problem might lead to local (suboptimal)

7The minimization of a quartic polynomial like this is a non-convex
problem whose resolution is not trivial.

8The details about this linear problem are given in suppl. material [13].
9Find details about the low-rank approximation in suppl. material [13].
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Algorithm 1: Recovery procedure
Input: Dual solution Λ? of dual problem [6]
Output: Feasible guess X0, optimality flag isOpt
V ← ker(M −Λ?); . Compute nullspace

X̌
?
, g? ← MetricUpgrade(V ); . Sec. IV-A

X0 ← Project(X̌
?
); . Sec. IV-B

isTight ← (g? == 0); . Detect if optimal
return X0, isOpt ← isTight

solutions. Nevertheless, the empirical performance remains
good in view of the experimental results.

Once we attain the desired optimal rank-3 estimate S?,
we decompose it into S? = K?(K?)> using the SVD
decomposition of S?. The product X̌

?
= V K? yields the

seeked “most feasible” Lagrangian solution (13).
Exact MLE recovery10: An important case is that when

rank(S?
R) = 3 and g?R = 0, since this evidences that the

Lagrangian relaxation is tight, f?ML = d?. In this case, the
upgrade output X̌

?
= V K? provides the globally optimal

solution to the original problem [P].

B. Projection to the feasible set

The “most feasible” candidate X̌
?

= V K? obtained
through the metric upgrade is still not, in general, a feasible
point for the original domain DP . To fix this, we look for
the point X0 ∈ DP closest to the chosen X̌

?
following

the same approach as in [14, Sec. III.A]. Namely, we
substitute each rotation block in X̌

?
by its closest rotation

matrix. To account for possible issues with reflections in
the solution, we also check the projection of X̌

?
J , where

J = diag(
[
1, 1,−1

]
), and keep the best projection as the

initial guess X0.

V. EXPERIMENTS

The objective of the experiments in this section is two-
fold: First, we show that for low and moderate rotation
noise the Lagrangian relaxation in [1] is tight and the
proposed recovery procedure is able to recover the optimal
MLE solution. Second, for PGO instances which are non-
tight due to high rotation noise and other poor conditions
of the problem we show that the initial estimate provided
by our recovery procedure drives to better solutions (lower
objective) than the state-of-the-art initialization in 3D PGO
[8], especially in those problem regimes where the PGO
problem becomes more challenging.

These claims above are supported by extensive Monte
Carlo analysis on simulated datasets with various topologies.
The conclusions were consistent regardless of the topology
so we show here the results for the grid topology only.
The results for the rest of topologies can be found in the
suppl. material [13]. The grid scenario is equivalent to
the simulation setup employed by Carlone et al. in [18]
(see Fig. 1), so we refer interested readers to that work or
our suppl. material [13] for further details on this synthetic

10Find the proof for this result in suppl. material [13].

dataset generation. The list of parameters parameterizing
the generated instances are the noise level both in rotation
measurements (σR) and translation measurements (σt), the
level of connectivity in the graph given as the probability or
ratio of loop closure Pc and, finally, the number of nodes in
the graph n.

For each simulated PGO instance, the dual problem (6)
was solved using CVX [26], providing the lower bound
d? ≤ f?ML on the optimal MLE objective and the [D] solution
Λ?. We used the latter in our recovery procedure (Alg. 1)
to obtain a feasible point X0 for the original problem [P].
When necessary (for non-tight relaxations) we performed
Gauss-Newton (GN) refinement on this initial guess. This
approach is tagged as A1. For comparison we used also
the state-of-the-art chordal initialization [2], [8] followed
by local iterative refinement with GN as well. We tag this
approach as chordal. When refining with GN, we iterated
until convergence or up to a maximum of 100 iterations. The
statistics were computed over 50 runs.

The performance of the methods is measured using the
optimality gap ∆ = f̂−d? ≥ 0, where f̂ is the final objective
value attained by the approach. For tight problems, f? = d?

and ∆ = 0 certifies a solution is optimal. Otherwise, there is
no way to certify optimality but ∆a < ∆b still implies that
“a” is a better estimate than “b”.

The main results in Fig. 3 shows the results as a boxplot
superimposed with a sorted display of the true underlying
data. A custom square-root-based scale [27] is used to
improve the visibility of the results. The upper portion of the
left Y axis above the dashed line displays extreme outliers,
which are significative here as a proof of occasional cases
with very bad performance. The percentage of non-tight
cases11 is symbolized by H, in the right Y axis.

Results: First we will focus on the results under increas-
ing rotation noise. Previous works has extensively pointed
[1], [8], [16], [18] that the tightness of the Lagrangian
relaxation (6) is sensitive to rotation noise above certain
threshold. This trend appears in Fig. 3(a): the relaxation is
tight for low noise, then tightness quickly deteriorates after
σR = 0.2 rad and from there on all the problems are just
non-tight.

As for chordal, it reaches the optimal MLE solution
for moderate noise levels, but as the problem becomes more
difficult, A1 reaches significantly lower ∆ than chordal,
especially for σR between 0.3 and 0.5 rad. This suggests
the heuristic at the core of A1 holds for a certain range of
problems wich go from moderate to high rotation noise.

For the rest of analyzed parameters, we fixed the rotation
noise at σR = 0.3 rad. At this critical point, the results
show that all the parameters affect the tightness, and again
the performance for A1 surpassed that of chordal.

Comparison with SDP relaxation in [18]: The recovery
procedure for the Lagrangian relaxation in [18] does not
make any special consideration about the non-tight casuistic,
often driving to poor initialization. For tight cases, both re-

11Optimality (in the tight case) is returned as a flag by Algorithm 1.
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(a) rotation noise σR (b) translation noise σt (c) connectivity Pc (d) graph size n

Fig. 3. Optimality gap and average tightness vs. grid parameters. The default set of parameters is σR = 0.3 rad, σt = 0.1 m, Pc = 0.2, and n = 125.
Left axis shows ∆ after GN refinement. The points H refer to the percentage of non-tight cases (right axis).

covery procedures provide the same optimal result. However,
as shown in [1, Fig. 3], our dual problem [D] is much faster
to solve by conventional interior point methods.

Scalability issues: At the time of writing of this work,
the solution of the dual problem [D] by interior point solvers
was the main computational burden in the pipeline. These
present serious scalability issues, and thus prevented the
application of our Algorithm 1 on large-scale datasets [8].

Luckily, very fast state-of-the-art solvers for the dual prob-
lem [D] exploiting the low-rank structure for our problem
have appeared since the original submission of this work
that unties the potential of the proposed procedures for
application in virtually any PGO instance regardless of its
size [28]. Future work will include further evaluation on
large-scale problem exploring the use of these solvers.

VI. CONCLUSIONS

This paper proposes an effective recovery procedure that
exploits the state-of-the-art formulation of the Lagrangian
relaxation for PGO [1] to return the globally optimal MLE
solution if the relaxation is tight, or a remarkably good
initialialization for non-tight relaxations. In both cases our
results match or surpass those of state-of-the-art alternatives,
specially in problem instances with severe noise regimes.

The performed experiments give some interesting hints
about the relation between the PGO problem and different
features of the graph data. We leave as future work exploring
this aspect and exploiting better suited SDP solvers to apply
these techniques in difficult large-scale real problems too.
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