7,870 research outputs found
The use of synchrotron edge topography to study polytype nearest neighbour relationships in SiC
A brief review of the phenomenon of polytypism is presented and its prolific abundance in Silicon Carbide discussed. An attempt has been made to emphasise modern developments in understanding this unique behaviour. The properties of Synchrotron Radiation are shown to be ideally suited to studies of polytypes in various materials and in particular the coalescence of polytypes in SiC. It is shown that with complex multipolytypic crystals the technique of edge topography allows the spatial extent of disorder to be determined and, from the superposition of Laue type reflections, neighbourhood relationships between polytypes can be deduced. Finer features have now been observed with the advent of second generation synchrotrons, the resolution available enabling the regions between adjoining polytypes to be examined more closely. It is shown that Long Period Polytypes and One Dimensionally Disordered layers often found in association with regions of high defect density are common features at polytype boundaries. An idealised configuration termed a "polytype sandwich" is presented as a model for the structure of SiC grown by the modified Lely technique. The frequency of common sandwich edge profiles are classified and some general trends of polytype neighbourism are summarised
Long period polytype boundaries in silicon carbide
A significant gap in our understanding of polytypism exists, caused partly by the lack of experimental data on the spatial distribution of polytype coalescence and knowledge of the regions between adjoining polytypes. Few observations, Takei & Francombe (1967) apart, of the relative location of different polytypes have been reported. A phenomenological description of the boundaries, exact position of one-dimensional disorder (1DD) and long period polytypes (LPP’s) has been made possible by synchrotron X-ray diffraction topography (XRDT)
Close packed structure with finite range interaction: computational mechanics of layer pair interaction
The stacking problem is approached by computational mechanics, using an Ising
next nearest neighbor model. Computational mechanics allows to treat the
stacking arrangement as an information processing system in the light of a
symbol generating process. A general method for solving the stochastic matrix
of the random Gibbs field is presented, and then applied to the problem at
hand. The corresponding phase diagram is then discussed in terms of the
underlying -machine, or optimal finite state machine, describing
statistically the system. The occurrence of higher order polytypes at the
borders of the phase diagram is also analyzed. Discussion of the applicability
of the model to real system such as ZnS and Cobalt is done. The method derived
is directly generalizable to any one dimensional model with finite range
interaction
Second harmonic generation in SiC polytypes
LMTO calculations are presented for the frequency dependent second harmonic
generation (SHG) in the polytypes 2H, 4H, 6H, 15R and 3C of SiC. All
independent tensor components are calculated. The spectral features and the
ratios of the 333 to 311 tensorial components are studied as a function of the
degree of hexagonality. The relationship to the linear optical response and the
underlying band structure are investigated. SHG is suggested to be a sensitive
tool for investigating the near band edge interband excitations.Comment: 12 pages, 10 figure
A comparative DFT study of electronic properties of 2H-, 4H- and 6H-SiC(0001) and SiC(000-1) clean surfaces: Significance of the surface Stark effect
Electric field, uniform within the slab, emerging due to Fermi level pinning
at its both sides is analyzed using DFT simulations of the SiC surface slabs of
different thickness. It is shown that for thicker slab the field is nonuniform
and this fact is related to the surface state charge. Using the electron
density and potential profiles it is proved that for high precision simulations
it is necessary to take into account enough number of the Si-C layers. We show
that using 12 diatomic layers leads to satisfactory results. It is also
demonstrated that the change of the opposite side slab termination, both by
different type of atoms or by their location, can be used to adjust electric
field within the slab, creating a tool for simulation of surface properties,
depending on the doping in the bulk of semiconductor. Using these simulations
it was found that, depending on the electric field, the energy of the surface
states changes in a different way than energy of the bulk states. This
criterion can be used to distinguish Shockley and Tamm surface states. The
electronic properties, i.e. energy and type of surface states of the three
clean surfaces: 2H-, 4H-, 6H-SiC(0001), and SiC() are analyzed and
compared using field dependent DFT simulations.Comment: 18 pages, 10 figures, 4 table
- …
