36,799 research outputs found
Polypyrrole Coated PET Fabrics for Thermal Applications
Polypyrrole can be chemically synthesized on PET fabrics, giving rise to textiles with high electric conductivity. These textiles are suitable for several applications from antistatic films to electromagnetic interference shielding devices. Here we discuss the thermal-electric performance and the heat generation of polypyrrole coated PET fabric samples, previously studied because of their electric conductivity and electromagnetic interference shielding effectiveness. The measured Seebeck effect is comparable with that of metallic thermocouples. Since polypyrrole shows extremely low thermal diffusivities regardless of the electrical conductivity, the low thermal conductivity gives significant advantage to the thermoelectric figure-of-merit ZT, comparable with that of some traditional inorganic thermoelectric materials. The heat generation is also investigated for possible heating textile devices. The results confirm polypyrrole as a prom- ising material for thermal electric applications due to its easy preparation in low cost processin
The mathematical description of the electrosynthesis of composites of oxy-hydroxycompounds cobalt with polypyrrole overooxidazed
The electrosynthesis of the composite with of the overoxidized polypyrrole with cobalt oxy-hydroxide in strongly acidic media has been described mathematically, using linear stability theory and bifurcation analysis. The steadystates stability conditions and oscillatory and monotonic instability requirements have been described too. The system´s behavior was compared with behavior of other systems with overoxidation, electropolymerization of heterocyclic compounds and electrosynthesis of the cobalt oxy-hydroxides
Layer-by-layer polypyrrole coated graphite oxide and graphene nanosheets as catalyst support materials for fuel cells
For the production of advanced types of catalyst support materials, the distinguished properties of graphene nanosheets were combined with the structural properties of conducting polypyrrole by the incorporation of graphene nanosheets into a polymer matrix by the proposed simple and low-cost fabrication technique. A precise tuning of electrical conductivity and thermal stability was achieved by controlling the polymer thickness of randomly dispersed graphene nanosheets. Initially, graphene nanosheets were fabricated in large quantities via a mild chemical synthetic route involving graphite oxidation, ultrasonic treatment, and chemical reduction. Then, polypyrrole/graphene nanosheet composites with improved conductivity, thermal stability, and high surface area were synthesized by in situ polymerization with the different pyrrole feed ratios. Although graphite oxide sheets have electrically insulating property, partially oxidized graphite oxide was also utilized as conductive fillers in polymer matrix. However, polypyrrole/graphene nanosheet composites have better electrical conductivity than polypyrrole/graphite oxide composites
New secondary batteries utilizing electronically conductive polymer cathodes
The objectives are to optimize the transport rates in electronically conductive polypyrrole films by controlling the morphology of the film and to assess the utility of these films as cathodes in a lithium/polypyrrole secondary battery. During this research period, a better understanding was gained of the fundamental electrochemical switching processes within the polypyrrole film. Three publications were submitted based on the work completed
Synthesis and characterization of copper, polyimide and TIPS-pentacene layers for the development of a solution processed fibrous transistor
A study was performed for the development of a flexible organic field effect transistor starting from a polyester fibre as substrate material. Focus of subsequent layer deposition was on low temperature soluble processes to allow upscaling. Gate layer consists out of a pyrrole polymerization and copper coating step. Polyimide dielectric layer was deposited using dipcoating. Gold electrodes were vacuum evaporated and patterned via mask fibre shadowing. The active layer consisted of a soluble p-type TIPS-pentacene organic semiconductor. Different deposition techniques have been examined. Considerable progress in development of a transistor has been made
Determination of diffusion coefficients in polypyrrole thin films using a current pulse relaxation method
The current pulse E sub oc relaxation method and its application to the determination of diffusion coefficients in electrochemically synthesized polypyrrole thin films is described. Diffusion coefficients for such films in Et4NBF4 and MeCN are determined for a series of submicron film thicknesses. Measurement of the double-layer capacitance, C sub dl, and the resistance, R sub u, of polypyrrole thin films as a function of potential obtained with the galvanostatic pulse method is reported. Measurements of the electrolyte concentration in reduced polypyrrole films are also presented to aid in the interpretation of the data
Using a dual plasma process to produce cobalt--polypyrrole catalysts for the oxygen reduction reaction in fuel cells -- part I: characterisation of the catalytic activity and surface structure
A new dual plasma coating process to produce platinum-free catalysts for the
oxygen reduction reaction in a fuel cell is introduced. The catalysts thus
produced were analysed with various methods. Electrochemical characterisation
was carried out by cyclic voltammetry, rotating ring- and rotating ring-disk
electrode. The surface porosity of the different catalysts thus obtained was
characterised with the nitrogen gas adsorption technique and scanning electron
microscopy was used to determine the growth mechanisms of the films. It is
shown that catalytically active compounds can be produced with this dual plasma
process. Furthermore, the catalytic activity can be varied significantly by
changing the plasma process parameters. The amount of HO produced was
calculated and shows that a 2 electron mechanism is predominant. The plasma
coating mechanism does not significantly change the surface BET area and pore
size distribution of the carbon support used. Furthermore, scanning electron
microscopy pictures of the produced films are presented and show the preference
of columnar growth mechanisms. By using different carbons as the support it is
shown that there is a strong dependence of the catalytic activity that is
probably related to the chemical properties of the carbon
- …
