231,269 research outputs found

    Dynamic surface decoupling in a sheared polymer melt

    Get PDF
    We propose that several mechanisms contribute to friction in a polymer melt adsorbed at a structured surface. The first one is the well known disentanglement of bulk polymer chains from the surface layer. However, if the surface is ideal at the atomic scale, the adsorbed parts of polymer chains can move along the equipotential lines of the surface potential. This gives rise to a strong slippage of the melt. For high shear rates chains partially desorb. However, the friction force on adsorbed chains increases, resulting in quasi-stick boundary conditions. We propose that the adsorbed layers can be efficiently used to adjust the friction force between the polymer melt and the surface

    Phase diagram for a mixture of colloids and polymers with equal size

    Get PDF
    We present the phase diagram of a colloid-polymer mixture in which the radius a of the colloidal spheres is approximately the same as the radius R of a polymer coil (q=R/a1). A three-phase coexistence region is experimentally observed, previously only reported for colloid-polymer mixtures with smaller polymer chains (q0.6). A recently developed generalized free-volume theory (GFVT) for mixtures of hard spheres and non-adsorbing excluded-volume polymer chains gives a quantitative description of the phase diagram. Monte Carlo simulations also agree well with experimen

    Polymer Translocation Through a Long Nanopore

    Full text link
    Polymer translocation through a nanopore in a membrane investigated theoretically. Recent experiments on voltage-driven DNA and RNA translocations through a nanopore indicate that the size and geometry of the pore are important factors in polymer dynamics. A theoretical approach is presented which explicitly takes into account the effect of the nanopore length and diameter for polymer motion across the membrane. It is shown that the length of the pore is crucial for polymer translocation dynamics. The present model predicts that for realistic conditions (long nanopores and large external fields) there are two regimes of translocation depending on polymer size: for polymer chains larger than the pore length, the velocity of translocation is nearly constant, while for polymer chains smaller than the pore length the velocity increases with decreasing polymer size. These results agree with experimental data.Comment: 14 pages, 5 figure

    Operator Product Expansion on a Fractal: The Short Chain Expansion for Polymer Networks

    Full text link
    We prove to all orders of renormalized perturbative polymer field theory the existence of a short chain expansion applying to polymer solutions of long and short chains. For a general polymer network with long and short chains we show factorization of its partition sum by a short chain factor and a long chain factor in the short chain limit. This corresponds to an expansion for short distance along the fractal perimeter of the polymer chains connecting the vertices and is related to a large mass expansion of field theory. The scaling of the second virial coefficient for bimodal solutions is explained. Our method also applies to the correlations of the multifractal measure of harmonic diffusion onto an absorbing polymer. We give a result for expanding these correlations for short distance along the fractal carrier of the measure.Comment: 28 pages, revtex, 4 Postscript figures, 3 latex emlines pictures. Replacement eliminates conflict with a blob resul
    corecore