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Phase diagram for a mixture of colloids and polymers
with equal size
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Abstract – We present the phase diagram of a colloid-polymer mixture in which the radius a of
the colloidal spheres is approximately the same as the radius R of a polymer coil (q=R/a≈ 1).
A three-phase coexistence region is experimentally observed, previously only reported for colloid-
polymer mixtures with smaller polymer chains (q� 0.6). A recently developed generalized free-
volume theory (GFVT) for mixtures of hard spheres and non-adsorbing excluded-volume polymer
chains gives a quantitative description of the phase diagram. Monte Carlo simulations also agree
well with experiment.

Copyright c© EPLA, 2008

Introduction. – The interaction between dispersed
colloids can be “tuned” by adding non-adsorbing polymer
chains [1]. In a mixture of non-adsorbing polymers and
colloids, each particle is surrounded by a layer of solvent
depleted of polymer [2–4] because of the loss in configu-
rational entropy of polymer chains near a surface. When
the depletion layers of two nearby particles overlap, these
particles attract one another [4,5]. This attractive force
can be measured using laser tweezers [6].
Depletion forces also modify the phase behaviour of

the colloids. A solid knowledge of polymer-induced modi-
fications to the equilibrium phase behaviour of colloids or
nanoparticles is fundamental for a better understanding of
more complex phenomena such as non-equilibrium aggre-
gation and for the controlled modification of the rheolog-
ical properties. Furthermore, the behaviour of mixtures
containing colloids and polymers of about the same
size is relevant for industrial applications, for example

(a)E-mail: remco.tuinier@googlemail.com

high-performance photovoltaic materials (reviewed in [7]).
Many of these systems are cast from solutions consisting
of mixtures of nanoparticles and conducting polymers
with a size ratio of approximately unity.
The equilibrium phase diagram of hard-sphere (HS)

colloids is simple: there is only a fluid-solid phase
transition when the colloids occupy about half of the
volume [8]. The phase behaviour of mixtures of HS
colloids and non-adsorbing polymers was first studied
experimentally by de Hek and Vrij using silica particles
and polystyrene in cyclohexane [9]. They observed a
separation into two coexisting colloidal fluid phases at
high enough polymer concentrations. Their observations
were explained semi-quantitatively using thermodynamic
perturbation theory to deal with the effect of an ideal
polymer on hard spheres at the pair level [10]. The
theory predicts fluid-crystal (FC), gas-liquid (GL) and
gas-crystal (GC) biphasic regions and a gas-liquid-crystal
(GLC) three-phase coexistence line. A liquid phase only
develops for q=R/a� 0.3 with q the ratio of the polymer
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radius of gyration R to the radius of the colloid a. This
was first qualitatively confirmed for a charge-stabilized
system [11,12] and then FC, GL and GC coexistence
were observed in a HS+polymer mixture [13]. No GLC
coexistence was reported in these studies.
The dependence of phase diagram topology on the size

ratio q was studied in HS-like poly-methylmethacrylate
(PMMA) colloids with added flexible polystyrene
chains dispersed in cis-decalin by Ilett et al. [14], who
found FC, GL, GC and also GLC coexistence for
q� 0.24. In all cases of coexistence, there was significant
polymer partitioning, with more polymer in dilute
colloid phases. Polymer partitioning and a three-phase
coexistence region at large enough q was predicted by
free-volume theory (FVT) [15], and confirmed by subse-
quent computer simulations [16,17]. GLC coexistence
has also been observed in aqueous colloids and added
polysaccharides [18,19] with q≈ 0.25 and ≈ 0.6.
To date, GLC triple coexistence has only been reported

for 0.24� q < 0.65. GLC for larger q values is difficult
to realize experimentally, as this requires relatively large
polymers and small colloids which, moreover, should be
nearly monodisperse. In most high-q experiments reported
in the literature the particles were so polydisperse that
crystallization proved impossible [20]. Thus, for example,
the work of De Hoog and Lekkerkerker at q≈ 1 [21] and
of Zhang and Van Duijneveldt [22] at q≈ 5 only reported
GL coexistence. In this paper we provide an experimental
example for q≈ 1 where the particles are monodisperse
enough to show crystallization and, consequently, GLC
triple coexistence.
There are significant quantitative discrepancies between

FVT and experiments, especially for q > 0.5. At q= 0.57,
FVT underestimates overall phase boundary positions
by a factor of 2 in polymer concentration and overes-
timates the size of the GLC coexistence region consid-
erably [14]. More dramatically, FVT underestimates the
polymer concentration in the colloidal liquid at triple coex-
istence by two orders of magnitude [23]. For higher q,
the deviations between FVT and experiment are even
worse [21,22].
Two of us have recently proposed a generalized free-

volume theory (GFVT, generalized FVT) for the phase
behaviour of colloid-polymer mixtures [24]. For small q
(the so-called colloid limit) its predictions are close to
those of FVT, but for higher q it takes into account the
compression of the depletion layers in semidilute solutions
and nonideal contributions to the osmotic pressure.
In the so-called protein limit (q� 1) a simple scaling
of the binodal polymer concentrations with q is found;
these predictions were tested using data from computer
simulations [25] and found to agree. Here we confront
this theory with a full experimental phase diagram of a
colloid-polymer mixture with q≈ 1 and nearly monodis-
perse particles. The q≈ 1 case is particularly interesting
compared to either q� 1 or q� 1. In the latter situations,
the smaller component can be treated perturbatively,

starting from a theory of a system consisting of just the
larger component. In contrast, a perturbative approach is
inappropriate for q≈ 1.
The experimental phase diagram shows all the regions

predicted by perturbation [10] and free-volume [15] theo-
ries, including GLC triple coexistence. As will be shown,
GFVT is able to give not only a qualitative but also a
quantitative account of our observations.

Materials and methods. – Sterically stabilized
PMMA colloids with radius a= 130± 2 nm (from static
light scattering) were synthesized according to literature
procedures [26]. The colloid volume fraction η was cali-
brated by measuring the fraction of colloidal crystals in
the fluid-crystal coexistence region, which varies linearly
from 0% to 100% in the interval 0.494< η < 0.545. From
the speed of the crystallization of the pure HS colloids, we
estimate that the polydispersity is smaller than 5%.
We used linear polystyrene (Polymer Laboratories) with
molar weight Mw = 15.4× 106 g/mol. The solvent was a
mixture of cis-decalin and tetralin to match the refractive
index of the colloids. Samples at various colloid volume
fractions η and polymer concentrations φ were well mixed
and then kept in a water bath at 16 ◦C for observations.
We refer to the polymer concentration in terms of an
effective concentration φ/φ∗, where φ∗ is the effective
polymer concentration at overlap.
The behaviour of polystyrene in cis-decalin has been

documented in detail by Berry [27]. At the theta temper-
ature, 13 ◦C ≡ 286K= Tθ, the radius of gyration of the
polymer is given by

R(Tθ) = 0.028 nm

√
Mw/gmol

−1. (1)

Berry characterized the chain non-ideality at temperature
T > Tθ by a dimensionless parameter z, which obeys

z = 0.00975

√
Mw/gmol

−1 (1−Tθ/T ) , (2)

where the temperatures are in kelvin. Figure 12 in Berry’s
paper gives R as a function of z and allows us to estimate
R of polystyrene of arbitrary Mw in cis-decalin at any
T . In this way we find that in cis-decalin at 16 ◦C our
polymer has z = 0.5 and a swollen size of R= 125 nm.
There is little quantitative information on polystyrene in
mixtures of cis-decalin and tetralin or in pure tetralin. It
has, however, been reported that the addition of tetralin to
a cyclohexane solution of polystyrene (at the latter’s theta
temperature, 34 ◦C) has little effect on the polymer [28].
We may thus expect that tetralin does also not change
the polymer size R very much for polystyrene dissolved
in cis-decalin just above this solvent’s theta temperature.
Therefore, we estimate the size ratio of our system to
be q≈ 125/130≈ 1. The overlap concentration, calculated
from a mass Mw/Nav in a volume 4πR

3/3, is found to be
3.1 g/�.

Results and discussion. – The experimentally
observed phases are represented as a function of sample
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Fig. 1: Phase diagram of a colloid-polymer mixture with q≈ 1.
Experimental observations are indicated by open symbols and
crosses as listed within the figure. The theoretical triple trian-
gle according to FVT [15] (dashed lines) and GFVT [24] (solid
lines) are also shown; filled circles correspond to the compo-
sition of coexisting GLC phases at the triple point predicted
by GFVT. The theoretical FC, GL and GC binodals are indi-
cated as the dashed (FVT) and solid (GFVT) curves, with the
theoretical predictions for the critical points represented by
filled squares. The pluses correspond to Monte Carlo simula-
tion results [25] for the gas-liquid binodal of hard spheres and
self-avoiding polymer chains with a size ratio q= 1.05.

composition, i.e., colloid volume fraction η and effective
polymer concentration φ/φ∗, in fig. 1. Below η= 0.5 a
stable one-phase fluid (circles) is found for low polymer
concentrations. At higher polymer concentrations GL
coexistence (crosses) is observed, as already found in
many experimental systems with q� 1 [21,22,29–32].
Further increase of φ/φ∗ results in three-phase coexis-
tence (triangles), previously experimentally found only
for 0.24� q� 0.6 [14,18,19]. At polymer concentrations
beyond triple coexistence we observed GC coexistence
(squares). At higher η and φ/φ∗ outside the range of
equilibrium data points shown in fig. 1, we observed a
range of non-equilibrium behaviour. The non-equilibrium
data are not shown, because the discussion of such
behaviour is outside the scope of the present work.
We compare the experimentally observed phase diagram

with FVT [15] and GFVT [24]. As shown by the dashed
triple triangle in fig. 1, FVT greatly overestimates the
GLC triple region (vertically hatched area). The gas side
of this triple triangle (outside the scale of fig. 1) is situated
at φ/φ∗ = 6 at very low η. The GL binodal according to
FVT (dashed curve with the critical point indicated as the
square) lies entirely in the experimental one-phase fluid
region, and thus underestimates the experimental binodal.
Previously, Aarts et al. [33] incorporated excluded-

volume interactions between polymer segments into
FVT by using renormalization group (RG) theoreti-
cal results [34]. This gives a better description of the
phase diagram at large q-values as compared to original

FVT [15] but it still overestimates the polymer concen-
trations at which demixing takes place due to a too small
RG correlation length (see fig. 19.10 in ref. [34]).
GFVT [24] describes the semidilute correlation length

correctly. This model accounts for the crossover of the
depletion thickness δ (next to a flat plate) from a value of
order R in dilute polymer solutions to a value ξ ∼ϕ−γ [2]
in semidilute solutions [35], and for the crossover of the
osmotic pressure from the ideal (Van’t Hoff) law Π=ϕ/N
to the semidilute (De Gennes) limit Π∼ ξ−3 ∼ϕ3γ [2,35],
where ϕ is the polymer volume fraction in the free volume
(or in an external reservoir). For excluded-volume chains
the De Gennes exponent γ equals 0.77. Also the numerical
prefactors of these semidilute scaling laws could be estab-
lished [35], so that quantitative theory becomes possible.
Throughout we use dimensionless quantities (all lengths
in units of the Kuhn length l, Π in units of kT/l3, etc.).
In the spirit of original FVT we consider in GFVT

the semi-grand potential Ω of a colloid-polymer mixture
with volume V in equilibrium with an external reservoir
containing only the polymer solution. The colloids cannot
enter the reservoir. Unlike in FVT we account for the
solvent as a separate component. We use the normal-
ized grand potential ω=Ωv/V , with the colloid volume
v= 4πa3/3. The fugacity of the polymer chains in the
system is set by the polymer volume fraction ϕ in the reser-
voir. The polymer concentration φ in the system is related
to ϕ through φ= αϕ, where α (eq. (4)) is the free volume
fraction in the system. We define the reduced external
concentration y by y=ϕ/ϕ∗, where ϕ∗ = φ∗ is the overlap
concentration.
The grand potential ω is separated in a hard-sphere

(HS) part ω0 (treated just as in [33]) and a polymer
contribution ωp. Without approximation it follows for ωp:

ωp =−
∫ y
0

α(∂Πv/∂y)dy. (3)

For the free volume fraction α we use the standard
scaled-particle result [15,33]:

α= (1− η) exp(−Af −Bf2−Cf3), (4)

where f = η/(1− η), A= (1+ qs)3− 1, B = 3q2s(qs+3/2),
and C = 3q3s . Here qs = δs/a, with δs the thickness of the
depletion zone around a colloidal sphere with radius a.
Curvature effects are included through qs = 0.815(δ/a)

0.88,
which is an excellent approximation [36] to the more
complicated expression given by Aarts et al. [33].
For δ and Πv we use recent results, which have been

shown to be in excellent agreement with simulations and
with experiment [35]. We find

qs = 0.865
(
q−2+3.95Y 2γ

)−0.44
, (5)

∂Πv/∂Y = q−1/ν +3.77Y 3γ−1, (6)

where the parameter Y is defined by

Y = yq−1/γ . (7)
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The parameter ν in eq. (6) is the Flory exponent, which
is directly related to the De Gennes exponent γ through
1/ν+1/γ = 3.
The parameter Y is a convenient normalized polymer

concentration which has the important property that it
becomes independent of the size ratio q in the protein
limit (high q) [24], where the polymer concentrations
along the binodals are in the semidilute regime. Then
δ= ξ ∼ϕ−γ [2], which does not depend on R. Hence,
δ/a does not depend on q=R/a, and qs = 0.815(δ/a)

0.88

reaches a constant (q-independent) level. According to

eq. (5), qs = 0.47Y
−0.68 in the protein limit, so also Y

becomes independent of q. In the colloid limit (small q) the
binodal polymer concentrations are in the dilute regime,
and qs = 0.865q

0.88 does depend on q. In this limit Y is a
function of q as well [36].
According to eq. (7), y= Y q1/γ diverges as q1/γ = q1.3 in

the protein limit, where Y is constant. This predicted q1.3

scaling [24] of protein-limit binodals is corroborated by
simulations [25]. In the colloid limit, where Y depends on
q, this scaling does not apply. Analytical approximations
for Y cp (critical points) and Y tp (triple points) as a
function of q are available [36].

The above equations allow us to calculate the two para-
meters that represent the new ingredients in GFVT: the
effective size ratio qs = δs/a and the osmotic pressure Π,
which only occurs as the product Πv; it is the osmotic
work to insert a particle (without depletion layer) into
the polymer solution. Plots of qs and Πv as a function of
y=ϕ/ϕ∗ are given in fig. 2, for three values of q: 0.4 (repre-
sentative for the colloid limit), 1 (relevant for the results
in fig. 1), and 5 (protein limit). The effective size ratio
crosses over from qs = 0.865 q

0.88 (close to but smaller

than q) at low y towards 0.47Y −0.68 = 0.47y−0.68q0.88;
the exponent for y is smaller than γ = 0.77 because of
curvature effects. The osmotic pressure changes from the

ideal law Πv= Y q−1/ν = yq−3 towards the semidilute
(De Gennes) behaviour Πv= 1.62Y 3γ = 1.62y3γq−3.
A very important feature of fig. 2 is that the semidilute

power law sections are horizontally shifted with respect to
each other by an amount 1.3 log(q). Hence, when the figure
is replotted with Y instead of y along the abscissa axis,
these semidilute branches collapse onto a single curve (not
shown), because Y in the semidilute limit (corresponding
to the protein limit) does not depend on q. The vertical

shift in fig. 2 is 0.88 log(q) for qs and 3 log(q) for Πv over

the whole range of y: plots of qsq
−0.88 and Πvq3 as a

function of y would give universal curves.
Equations (4), (5) and (6) provide the ingredients for ωp

in eq. (3). The latter equation is now used with y replaced
by Y . Standard thermodynamics enables the calculation of
the full phase diagram from ω= ω0+ωp and its derivatives
with respect to η. For these derivatives explicit analytical
expressions are available [36].
We plot the GFVT predictions for mixtures of HS

and polymer chains with excluded-volume interaction and
q= 1 in fig. 1 as the solid curves for the binodal and solid

Fig. 2: Dependence of the effective size ratio qs (left axis; solid
curves) and insertion work Πv (right axis; dashed curves) on
the effective (external) polymer concentration y, for q = 0.4, 1,
and 5. For q = 1 the dilute and semidilute limits are indicated
as the dotted lines.

lines for the triple triangle. The filled circles correspond to
the compositions of coexisting GLC samples at the triple
point, while the filled square represents the critical point.
It is evident that GFVT gives an excellent account of the
GL binodal, as well as good agreement with the GLC
three-phase coexistence.
In fig. 1 we inserted GL binodal points (pluses) from

Monte Carlo simulations for hard spheres and self-avoiding
polymer chains [25] with a size ratio q= 1.05. The agree-
ment of these simulations with experiment and with the
GFVT binodal for q= 1 is quite good. It is clear that prop-
erly accounting for excluded-volume interactions between
polymer segments, as in GFVT, gives a better descrip-
tion of the GL simulations. Simulation data of three-phase
equilibria for HS plus interacting polymer chains are not
yet available.
Further effects might be responsible for the minor

quantitative discrepancies. The GFVT computations (and
simulations) are for a good solvent, whereas the polymer in
the experiments is probably in a moderately good solvent,
in between the theta and athermal limits. The numerical
constants in GFVT (see eqs. (5) and (6)) were obtained
from RG theory and simulations, and might be slightly
different for real systems; in principle these constants
are available from carefully designed experiments [35].
Moreover, the particles in any real experiment have finite
polydispersity. The effect of particle polydispersity on the
phase behaviour of mixtures of hard spheres and ideal
polymers at low size ratios has been explored (q < 0.5) [37].
Even modest polydispersities (< 10%) can significantly
change the phase diagram topology by introducing a host
of new, multiphasic equilibria involving multiple solid
phases1. Fasolo and Sollich [37] used original FVT in

1In practice, such multiphasic equilibria may show up as
kinetic effects preventing the system reaching equilibrium. The non-
equilibrium behaviour we observed at high (η, φ), already mentioned
above, may partly be due to this effect.
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their treatment of particle polydispersity. It should be
possible to combine their approach with GFVT to predict
how particle polydispersity affects the phase behaviour
at q≈ 1.
Finally, we note that the thermodynamic concepts of

original FVT to describe polymer-colloid phase diagrams
seem to be sound. The only new aspect of GFVT is to
include the correct dependence of the depletion thickness
and osmotic pressure on polymer concentration. With this
modification the application of (G)FVT to more complex
systems, including for instance charged colloids [38], seems
possible. GFVT is valid for any size ratio q and for any
polymer concentration up to and including the semidilute
regime. It breaks down in the concentrated regime, but in
this regime experiments are very difficult, because of high
viscosity and extremely slow equilibration. In practice,
GFVT would describe most experimentally accessible
binodal curves.

Conclusions. – In this letter we have described the
phase behaviour of a mixture of hard-sphere colloids and
non-ideal polymer chains of about the same size. For
the first time a three-phase coexistence region is exper-
imentally observed for a size ratio q > 0.6. Generalized
free-volume theory (GFVT), which accounts for excluded-
volume interactions, correctly predicts the experimental
phase diagram, in particular the gas-liquid (GL) binodal
and the gas-liquid-crystal three-phase region (GLC). It
also agrees well with Monte Carlo simulations for mixtures
of hard spheres and self-avoiding polymer chains.
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