6,571 research outputs found

    Two snap-stabilizing point-to-point communication protocols in message-switched networks

    Get PDF
    A snap-stabilizing protocol, starting from any configuration, always behaves according to its specification. In this paper, we present a snap-stabilizing protocol to solve the message forwarding problem in a message-switched network. In this problem, we must manage resources of the system to deliver messages to any processor of the network. In this purpose, we use information given by a routing algorithm. By the context of stabilization (in particular, the system starts in an arbitrary configuration), this information can be corrupted. So, the existence of a snap-stabilizing protocol for the message forwarding problem implies that we can ask the system to begin forwarding messages even if routing information are initially corrupted. In this paper, we propose two snap-stabilizing algorithms (in the state model) for the following specification of the problem: - Any message can be generated in a finite time. - Any emitted message is delivered to its destination once and only once in a finite time. This implies that our protocol can deliver any emitted message regardless of the state of routing tables in the initial configuration. These two algorithms are based on the previous work of [MS78]. Each algorithm needs a particular method to be transform into a snap-stabilizing one but both of them do not introduce a significant overcost in memory or in time with respect to algorithms of [MS78]

    An acoustic metamaterial lens for acoustic point-to-point communication in air

    Full text link
    Acoustic metamaterials have become a novel and effective way to control sound waves and design acoustic devices. In this study, we design a 3D acoustic metamaterial lens (AML) to achieve point-to-point acoustic communication in air: any acoustic source (i.e. a speaker) in air enclosed by such an AML can produce an acoustic image where the acoustic wave is focused (i.e. the field intensity is at a maximum, and the listener can receive the information), while the acoustic field at other spatial positions is low enough that listeners can hear almost nothing. Unlike a conventional elliptical reflective mirror, the acoustic source can be moved around inside our proposed AML. Numerical simulations are given to verify the performance of the proposed AML

    An analysis of point-to-point communication for application to the lunar flyer program

    Get PDF
    Determining optimum frequency for point-to-point communication in vicinity of line-of-sight horizon on lunar surfac

    Error Mitigation of Point-to-Point Communication for Fault-Tolerant Computing

    Get PDF
    Fault tolerant systems require the ability to detect and recover from physical damage caused by the hardware s environment, faulty connectors, and system degradation over time. This ability applies to military, space, and industrial computing applications. The integrity of Point-to-Point (P2P) communication, between two microcontrollers for example, is an essential part of fault tolerant computing systems. In this paper, different methods of fault detection and recovery are presented and analyzed

    Training-Based Schemes are Suboptimal for High Rate Asynchronous Communication

    Get PDF
    We consider asynchronous point-to-point communication. Building on a recently developed model, we show that training based schemes, i.e., communication strategies that separate synchronization from information transmission, perform suboptimally at high rate.Comment: To appear in the proceedings of the 2009 IEEE Information Theory Workshop (Taormina

    Single-Producer/Single-Consumer Queues on Shared Cache Multi-Core Systems

    Full text link
    Using efficient point-to-point communication channels is critical for implementing fine grained parallel program on modern shared cache multi-core architectures. This report discusses in detail several implementations of wait-free Single-Producer/Single-Consumer queue (SPSC), and presents a novel and efficient algorithm for the implementation of an unbounded wait-free SPSC queue (uSPSC). The correctness proof of the new algorithm, and several performance measurements based on simple synthetic benchmark and microbenchmark, are also discussed
    • …
    corecore