3,681 research outputs found

    The crystal structure of Pneumolysin at 2.0 Å resolution reveals the molecular packing of the pre-pore complex

    Get PDF
    Pneumolysin is a cholesterol-dependent cytolysin (CDC) and virulence factor of Streptococcus pneumoniae. It kills cells by forming pores assembled from oligomeric rings in cholesterol-containing membranes. Cryo-EM has revealed the structures of the membrane-surface bound pre-pore and inserted-pore oligomers, however the molecular contacts that mediate these oligomers are unknown because high-resolution information is not available. Here we have determined the crystal structure of full-length pneumolysin at 1.98 Å resolution. In the structure, crystal contacts demonstrate the likely interactions that enable polymerisation on the cell membrane and the molecular packing of the pre-pore complex. The hemolytic activity is abrogated in mutants that disrupt these intermolecular contacts, highlighting their importance during pore formation. An additional crystal structure of the membrane-binding domain alone suggests that changes in the conformation of a tryptophan rich-loop at the base of the toxin promote monomer-monomer interactions upon membrane binding by creating new contacts. Notably, residues at the interface are conserved in other members of the CDC family, suggesting a common mechanism for pore and pre-pore assembly

    Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection.

    Get PDF
    Monocytes and T-cells are critical to the host response to acute bacterial infection but monocytes are primarily viewed as amplifying the inflammatory signal. The mechanisms of cell death regulating T-cell numbers at sites of infection are incompletely characterized. T-cell death in cultures of peripheral blood mononuclear cells (PBMC) showed 'classic' features of apoptosis following exposure to pneumococci. Conversely, purified CD3(+) T-cells cultured with pneumococci demonstrated necrosis with membrane permeabilization. The death of purified CD3(+) T-cells was not inhibited by necrostatin, but required the bacterial toxin pneumolysin. Apoptosis of CD3(+) T-cells in PBMC cultures required 'classical' CD14(+) monocytes, which enhanced T-cell activation. CD3(+) T-cell death was enhanced in HIV-seropositive individuals. Monocyte-mediated CD3(+) T-cell apoptotic death was Fas-dependent both in vitro and in vivo. In the early stages of the T-cell dependent host response to pneumococci reduced Fas ligand mediated T-cell apoptosis was associated with decreased bacterial clearance in the lung and increased bacteremia. In summary monocytes converted pathogen-associated necrosis into Fas-dependent apoptosis and regulated levels of activated T-cells at sites of acute bacterial infection. These changes were associated with enhanced bacterial clearance in the lung and reduced levels of invasive pneumococcal disease

    ciliaFA : a research tool for automated, high-throughput measurement of ciliary beat frequency using freely available software

    Get PDF
    Background: Analysis of ciliary function for assessment of patients suspected of primary ciliary dyskinesia (PCD) and for research studies of respiratory and ependymal cilia requires assessment of both ciliary beat pattern and beat frequency. While direct measurement of beat frequency from high-speed video recordings is the most accurate and reproducible technique it is extremely time consuming. The aim of this study was to develop a freely available automated method of ciliary beat frequency analysis from digital video (AVI) files that runs on open-source software (ImageJ) coupled to Microsoft Excel, and to validate this by comparison to the direct measuring high-speed video recordings of respiratory and ependymal cilia. These models allowed comparison to cilia beating between 3 and 52 Hz. Methods: Digital video files of motile ciliated ependymal (frequency range 34 to 52 Hz) and respiratory epithelial cells (frequency 3 to 18 Hz) were captured using a high-speed digital video recorder. To cover the range above between 18 and 37 Hz the frequency of ependymal cilia were slowed by the addition of the pneumococcal toxin pneumolysin. Measurements made directly by timing a given number of individual ciliary beat cycles were compared with those obtained using the automated ciliaFA system. Results: The overall mean difference (± SD) between the ciliaFA and direct measurement high-speed digital imaging methods was −0.05 ± 1.25 Hz, the correlation coefficient was shown to be 0.991 and the Bland-Altman limits of agreement were from −1.99 to 1.49 Hz for respiratory and from −2.55 to 3.25 Hz for ependymal cilia. Conclusions: A plugin for ImageJ was developed that extracts pixel intensities and performs fast Fourier transformation (FFT) using Microsoft Excel. The ciliaFA software allowed automated, high throughput measurement of respiratory and ependymal ciliary beat frequency (range 3 to 52 Hz) and avoids operator error due to selection bias. We have included free access to the ciliaFA plugin and installation instructions in Additional file 1 accompanying this manuscript that other researchers may use

    A cardinal role for cathepsin D in co-ordinating the host-mediated apoptosis of macrophages and killing of pneumococci

    Get PDF
    The bactericidal function of macrophages against pneumococci is enhanced by their apoptotic demise, which is controlled by the anti-apoptotic protein Mcl-1. Here, we show that lysosomal membrane permeabilization (LMP) and cytosolic translocation of activated cathepsin D occur prior to activation of a mitochondrial pathway of macrophage apoptosis. Pharmacological inhibition or knockout of cathepsin D during pneumococcal infection blocked macrophage apoptosis. As a result of cathepsin D activation, Mcl-1 interacted with its ubiquitin ligase Mule and expression declined. Inhibition of cathepsin D had no effect on early bacterial killing but inhibited the late phase of apoptosis-associated killing of pneumococci in vitro. Mice bearing a cathepsin D-/- hematopoietic system demonstrated reduced macrophage apoptosis in vivo, with decreased clearance of pneumococci and enhanced recruitment of neutrophils to control pulmonary infection. These findings establish an unexpected role for a cathepsin D-mediated lysosomal pathway of apoptosis in pulmonary host defense and underscore the importance of apoptosis-associated microbial killing to macrophage function

    The impact of pneumolysin on the macrophage response to Streptococcus pneumoniae is strain-dependent

    Get PDF
    Streptococcus pneumoniae is the world's leading cause of pneumonia, bacteremia, meningitis and otitis media. A major pneumococcal virulence factor is the cholesterol-dependent cytolysin, which has the defining property of forming pores in cholesterol-containing membranes. In recent times a clinically significant and internationally successful serotype 1 ST306 clone has been found to express a non-cytolytic variant of Ply (Ply306). However, while the pneumococcus is a naturally transformable organism, strains of the ST306 clonal group have to date been virtually impossible to transform, severely restricting efforts to understand the role of non-cytolytic Ply in the success of this clone. In this study isogenic Ply mutants were constructed in the D39 background and for the first time in the ST306 background (A0229467) to enable direct comparisons between Ply variants for their impact on the immune response in a macrophage-like cell line. Strains that expressed cytolytic Ply were found to induce a significant increase in IL-1β release from macrophage-like cells compared to the non-cytolytic and Ply-deficient strains in a background-independent manner, confirming the requirement for pore formation in the Ply-dependent activation of the NLRP3 inflammasome. However, cytolytic activity in the D39 background was found to induce increased expression of the genes encoding GM-CSF (CSF2), p19 subunit of IL-23 (IL23A) and IFNβ (IFNB1) compared to non-cytolytic and Ply-deficient D39 mutants, but had no effect in the A0229467 background. The impact of Ply on the immune response to the pneumococcus is highly dependent on the strain background, thus emphasising the importance of the interaction between specific virulence factors and other components of the genetic background of this organism

    Antibody responses to nasopharyngeal carriage of Streptococcus pneumoniae in adults: A longitudinal household study

    Get PDF
    Background. Natural immunity to Streptococcus pneumoniae is thought to be induced by exposure to S. pneumoniae or cross-reactive antigens. No longitudinal studies of carriage of and immune responses to S. pneumoniae have been conducted using sophisticated immunological laboratory techniques.Methods. We enrolled 121 families with young children into this study. Nasopharyngeal (NP) swabs were collected monthly for 10 months from all family members and were cultured in a standard fashion. Cultured S. pneumoniae isolates were serotyped. At the beginning (month 0) and end (month 10) of the study, venous blood was collected from family members 118 years old. Serotype-specific antipolysaccharide immunoglobulin G (IgG) and functional antibody and antibodies to pneumolysin, pneumococcal surface protein A (PspA), and pneumococcal surface antigen A (PsaA) were measured in paired serum samples.Results. Levels of anticapsular IgG increased significantly after carriage of serotypes 9V, 14, 18C, 19F, and 23F by an individual or family member. For serotype 14, a higher level of anticapsular IgG at the beginning of the study was associated with reduced odds of carriage (P = .0006). There was a small (similar to 20%) but significant increase in titers of antibodies to PsaA and pneumolysin but no change in titers of antibody to PspA.Conclusions. Adults respond to NP carriage by mounting anticapsular and weak antiprotein antibody responses, and naturally induced anticapsular IgG can prevent carriage

    Polyhydroxyalkanoate beads as a particulate vaccine against Streptococcus pneumoniae and Neisseria meningitidis : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Microbiology at Massey University, Manawatu, New Zealand

    Get PDF
    Listed in 2018 Dean's List of Exceptional ThesesStreptococcus pneumoniae and Neisseria meningitidis are the major causes of pneumonia and meningitis, respectively, worldwide. Capsular polysaccharide-protein vaccines (conjugate vaccines) provide protection against these diseases but not protection against infections caused by serotypes and serogroups not included in these vaccines. Proteins have been increasingly considered as antigens for vaccine development due to their more structurally conserved composition when compared to capsular polysaccharides. Proteins subunit vaccines are safe and protective; however, they have limitations such as serotype-dependent immunity, and low immunogenicity of the proteins, requiring adjuvant to be included in these formulations or delivery systems that enhance the desired immune response. In addition, complex production procedures are required, increasing production costs and therefore market prices making these vaccines inaccessible for many people affected by these diseases. Recently, bacterial storage polymer inclusions have been developed as protein antigen carriers. Polyhydroxyalkanoate, in particular 3-polyhydroxybutyrate (PHB) inclusions have been successfully bioengineered to display antigens from pathogens like Mycobacterium tuberculosis and Hepatitis C virus. These particulate vaccine candidates elicited both a Th1 and Th2 immunity patterns combined with a protective immune response against Mycobacterium bovis in mice. This thesis focuses on the study of polyhydroxybutyrate (PHB) beads properties as a carrier/delivery system engineered to display antigens from extracellular bacteria. The antigens Pneumococcal adhesin A, Pneumolysin (proteins) and 19F capsular polysaccharide (CPS) from Streptococcus pneumoniae, and Neisserial adhesin A, factor H binding protein (proteins) and serogroup C CPS from Neisseria meningitidis were displayed on the PHB bead surface. These antigenic proteins were produced as fusion proteins on the PHB bead surface, while the CPS was covalently attached by chemical conjugation. Mice vaccinated with these PHB beads produced strong and antigen-specific antibody levels. In addition, splenocytes from the same mice generated both IL-17A and IFN-ɣ production. The antibodies elicited against antigenic pneumococcal proteins were able to recognise the same protein in the context of an Streptococcus pneumoniae whole cell lysate from more than six different strains, while antibodies produced after vaccination with 19F CPS conjugate to PHB showed high opsonophagocytic titers against the homologous strain. In the case of Neisseria meningitidis, bactericidal antibodies were elicited in mice vaccinated with PHB beads displaying proteinaceous and CPS antigens. Overall, this thesis shows that PHB as particulate vaccine candidate holds the promise of a broadly protective vaccine that can be produced cost-effectively for widespread application to prevent diseases caused by Neisseria meningitidis and Streptococcus pneumoniae

    Extracellular calcium reduction strongly increases the lytic capacity of pneumolysin from streptococcus pneumoniae in brain tissue

    Get PDF
    Background. Streptococcus pneumoniae causes serious diseases such as pneumonia and meningitis. Its major pathogenic factor is the cholesterol-dependent cytolysin pneumolysin, which produces lytic pores at high concentrations. At low concentrations, it has other effects, including induction of apoptosis. Many cellular effects of pneumolysin appear to be calcium dependent. Methods. Live imaging of primary mouse astroglia exposed to sublytic amounts of pneumolysin at various concentrations of extracellular calcium was used to measure changes in cellular permeability (as judged by lactate dehydrogenase release and propidium iodide chromatin staining). Individual pore properties were analyzed by conductance across artificial lipid bilayer. Tissue toxicity was studied in continuously oxygenated acute brain slices. Results. The reduction of extracellular calcium increased the lytic capacity of the toxin due to increased membrane binding. Reduction of calcium did not influence the conductance properties of individual toxin pores. In acute cortical brain slices, the reduction of extracellular calcium from 2 to 1 mM conferred lytic activity to pathophysiologically relevant nonlytic concentrations of pneumolysin. Conclusions. Reduction of extracellular calcium strongly enhanced the lytic capacity of pneumolysin due to increased membrane binding. Thus, extracellular calcium concentration should be considered as a factor of primary importance for the course of pneumococcal meningitis

    Insights into pneumococcal pneumonia using lung aspirates and nasopharyngeal swabs collected from pneumonia patients in The Gambia.

    Get PDF
    We investigated the pathogenesis of pneumococcal pneumonia using clinical specimens collected for pneumonia surveillance in The Gambia. Lung aspirates and nasopharyngeal swabs from 31 patients were examined by culture, qPCR, whole genome sequencing, serotyping, and reverse transcription qPCR. Five lung aspirates cultured pneumococci, with a matching strain identified in the nasopharynx. Three virulence genes including ply (pneumolysin) were upregulated >20-fold in the lung compared with the nasopharynx. Nasopharyngeal pneumococcal density was higher in pediatric pneumonia patients compared with controls (p <0.0001). Findings suggest that changes in pneumococcal gene expression occurring in the lung environment may be important in pathogenesis
    corecore