37,211 research outputs found

    Physisorption of Nucleobases on Graphene

    Get PDF
    We report the results of our first-principles investigation on the interaction of the nucleobases adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U) with graphene, carried out within the density functional theory framework, with additional calculations utilizing Hartree--Fock plus second-order Moeller-Plesset perturbation theory. The calculated binding energy of the nucleobases shows the following hierarchy: G > T ~ C ~ A > U, with the equilibrium configuration being very similar for all five of them. Our results clearly demonstrate that the nucleobases exhibit significantly different interaction strengths when physisorbed on graphene. The stabilizing factor in the interaction between the base molecule and graphene sheet is dominated by the molecular polarizability that allows a weakly attractive dispersion force to be induced between them. The present study represents a significant step towards a first-principles understanding of how the base sequence of DNA can affect its interaction with carbon nanotubes, as observed experimentally.Comment: 7 pages, 3 figure

    Structural models of random packing of spheres extended to bricks: Simulation of the nanoporous calcium silicate hydrates

    Get PDF
    Structure simulation algorithms of random packing of spheres and bricks have been developed. These algorithms were used to reproduce the nanostructure of the cementitious calcium silicate hydrates. The textural parameters (specific surface area, porosity, pore size, etc.) of a calcium silicate hydrates (C-S-H) sample, the main binding phase of hydrated cements, have been derived from N2-physisorption experiments. At the same time, these parameters have been simulated by using a sphere-based structural model, where the spheres are randomly packed according to several hierarchical levels. The corresponding algorithm has been extended for managing cuboids instead of spheres. The C-S-H sample density is successfully predicted by considering the presence of water in pores defined by the sphere network within 10-nm-size globules and assuming a tobermorite-like skeleton. Simulations with bricks (321.4nm3) yield also textural parameters that are consistent with N2-physisorption data, but with a globule radius (22nm) twice as big as that obtained when using spheres.European Union MRTN-CT-2006-03586

    Phonon-mediated sticking of electrons at dielectric surfaces

    Full text link
    We study phonon-mediated temporary trapping of an electron in polarization-induced external surface states (image states) of a dielectric surface. Our approach is based on a quantum-kinetic equation for the occupancy of the image states. It allows us to distinguish between prompt and kinetic sticking. Because the depth of the image potential is much larger than the Debye energy multi-phonon processes are important. Taking two-phonon processes into account in cases where one-phonon processes yield a vanishing transition probability, as it is applicable, for instance, to graphite, we analyze the adsorption scenario as a function of potential depth and surface temperature and calculate prompt and kinetic sticking coefficients. We find rather small sticking coefficients, at most of the order of 10310^{-3}, and a significant suppression of the kinetic sticking coefficient due to a relaxation bottleneck inhibiting thermalization of the electron with the surface at short timescales.Comment: 10 pages, 7 figure

    Storage of hydrogen in nanostructured carbon materials

    Get PDF
    Recent developments focusing on novel hydrogen storage media have helped to benchmark nanostructured carbon materials as one of the ongoing strategic research areas in science and technology. In particular, certain microporous carbon powders, carbon nanomaterials, and specifically carbon nanotubes stand to deliver unparalleled performance as the next generation of base materials for storing hydrogen. Accordingly, the main goal of this report is to overview the challenges, distinguishing traits, and apparent contradictions of carbon-based hydrogen storage technologies and to emphasize recently developed nanostructured carbon materials that show potential to store hydrogen by physisorption and/or chemisorption mechanisms. Specifically touched upon are newer material preparation methods as well as experimental and theoretical attempts to elucidate, improve or predict hydrogen storage capacities, sorption–desorption kinetics, microscopic uptake mechanisms and temperature–pressure–loading interrelations in nanostructured carbons, particularly microporous powders and carbon nanotubes

    Physisorption of positronium on quartz surfaces

    Full text link
    The possibility of having positronium (Ps) physisorbed at a material surface is of great fundamental interest, since it can lead to new insight regarding quantum sticking and is a necessary first step to try to obtain a Ps2_2 molecule on a material host. Some experiments in the past have produced evidence for physisorbed Ps on a quartz surface, but firm theoretical support for such a conclusion was lacking. We present a first-principles density-functional calculation of the key parameters determining the interaction potential between Ps and an α\alpha-quartz surface. We show that there is indeed a bound state with an energy of 0.14 eV, a value which agrees very well with the experimental estimate of 0.15\sim0.15 eV. Further, a brief energy analysis invoking the Langmuir-Hinshelwood mechanism for the reaction of physisorbed atoms shows that the formation and desorption of a Ps2_2 molecule in that picture is consistent with the above results.Comment: 5 pages, 3 figures, submitte

    Evaluation of New Density Functional with Account of van der Waals Forces by Use of Experimental H2 Physisorption Data on Cu(111)

    Get PDF
    Detailed experimental data for physisorption potential-energy curves of H2 on low-indexed faces of Cu challenge theory. Recently, density-functional theory has been developed to also account for nonlocal correlation effects, including van der Waals forces. We show that one functional, denoted vdW-DF2, gives a potential-energy curve promisingly close to the experiment-derived physisorptionenergy curve. The comparison also gives indications for further improvements of the functionals

    Rings sliding on a honeycomb network: Adsorption contours, interactions, and assembly of benzene on Cu(111)

    Full text link
    Using a van der Waals density functional (vdW-DF) [Phys. Rev. Lett. 92, 246401 (2004)], we perform ab initio calculations for the adsorption energy of benzene (Bz) on Cu(111) as a function of lateral position and height. We find that the vdW-DF inclusion of nonlocal correlations (responsible for dispersive interactions) changes the relative stability of eight binding-position options and increases the binding energy by over an order of magnitude, achieving good agreement with experiment. The admolecules can move almost freely along a honeycomb web of "corridors" passing between fcc and hcp hollow sites via bridge sites. Our diffusion barriers (for dilute and two condensed adsorbate phases) are consistent with experimental observations. Further vdW-DF calculations suggest that the more compact (hexagonal) Bz-overlayer phase, with lattice constant a = 6.74 \AA, is due to direct Bz-Bz vdW attraction, which extends to ~8 \AA. We attribute the second, sparser hexagonal Bz phase, with a = 10.24 \AA, to indirect electronic interactions mediated by the metallic surface state on Cu(111). To support this claim, we use a formal Harris-functional approach to evaluate nonperturbationally the asymptotic form of this indirect interaction. Thus, we can account well for benzene self-organization on Cu(111).Comment: 13 pages, 7 figures, 3 tables, submitted for publication Accepted for publication in Phys. Rev. B. This version contains improved notation (with corresponding relabeling of figures), very small corrections to some tabulated values, and corrections concerning lattice lengths and subsequent discussion of commensurability of unit-cell dimension
    corecore