136 research outputs found

    Local Defects in colloidal quantum dot thin films measured via spatially resolved multi-modal optoelectronic spectroscopy.

    Full text link
    The morphology, chemical composition, and electronic uniformity of thin-film solution-processed optoelectronics are believed to greatly affect device performance. Although scanning probe microscopies can address variations on the micrometer scale, the field of view is still limited to well under the typical device area, as well as the size of extrinsic defects introduced during fabrication. Herein, a micrometer-resolution 2D characterization method with millimeter-scale field of view is demonstrated, which simultaneously collects photoluminescence spectra, photocurrent transients, and photovoltage transients. This high-resolution morphology mapping is used to quantify the distribution and strength of the local optoelectronic property variations in colloidal quantum dot solar cells due to film defects, physical damage, and contaminants across nearly the entire test device area, and the extent to which these variations account for overall performance losses. It is found that macroscopic defects have effects that are confined to their localized areas, rarely prove fatal for device performance, and are largely not responsible for device shunting. Moreover, quantitative analysis based on statistical partitioning methods of such data is used to show how defect identification can be automated while identifying variations in underlying properties such as mobilities and recombination strengths and the mechanisms by which they govern device behavior.DMR-1807342 - National Science Foundation; Hopkins Extreme Materials InstituteAccepted manuscrip

    Efficient fully blade-coated perovskite solar cells in air with nanometer-thick bathocuproine buffer layer

    Get PDF
    Fully printed perovskite solar cells (PSCs) were fabricated in air with all constituent layers, except for electrodes, deposited by the blade coating technique. The PSCs incorporated, for the first time, a nanometer-thick printed bathocuproine (BCP) hole blocking buffer using blade coating and deposited at relative humidity up to 50%. The PSCs with a p-i-n structure (glass/indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/CH3NH3PbI3/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM)/BCP/Ag) delivered a maximum power conversion efficiency (PCE) of 14.9% on an active area of 0.5 cm2 when measured under standard test conditions. The PSCs with a blade coated BCP delivered performance of 10% and 63% higher (in relative terms) than those incorporating a spin coated BCP or without any BCP film, respectively. The atomic force microscopy (AFM) showed that blade coated films were more homogeneous and acted also as a surface planarizer leading to a reduction of roughness which improved BCP/Ag interface lowering charge recombination. The demonstration of 15% efficient devices with all constituent layers, including nanometer-thick BCP (∼ 10 nm), deposited by blade coating in air, demonstrates a route for industrialization of this technology

    Characterization of designed cobaltacarborane porphyrins using conductive probe atomic force microscopy

    Get PDF
    © 2016 Jayne C. Garno, et al. Porphyrins and metalloporphyrins have unique chemical and electronic properties and thus provide useful model structures for studies of nanoscale electronic properties. The rigid planar structures and π-conjugated backbones of porphyrins convey robust electrical characteristics. For our investigations, cobaltacarborane porphyrins were synthesized using a ring-opening zwitterionic reaction to produce isomers with selected arrangements of carborane clusters on each macrocycle. Experiments were designed to investigate how the molecular structure influences the selforganization, surface assembly, and conductive properties of three molecular structures with 2, 4, or 8 cobaltacarborane substituents. Current versus voltage (I-V) spectra for designed cobaltacarborane porphyrins deposited on conductive gold substrates were acquired using conductive probe atomic force microscopy (CP-AFM). Characterizations with CP-AFM provide capabilities for obtaining physical measurements and structural information with unprecedented sensitivity. We found that the morphology of cobaltacarborane porphyrin structures formed on surfaces depends on a complex interplay of factors such as the solvent used for dissolution, the nature of the substrate, and the design of the parent molecule. The conductive properties of cobaltacarborane porphyrins were observed to change according to the arrangement of cobaltacarborane substituents. Specifically, the number and placement of the cobaltacarborane ligands on the porphyrin macrocycle affect the interactions that drive porphyrin self-assembly and crystallization. Interestingly, coulombic staircase I-V profiles were detected for a porphyrin with two cobaltacarborane substituents

    Optoelectronic properties of LaVO3 perovskite for photovoltaic applications investigated by surface potential measurements

    Get PDF
    La ricerca su materiali innovativi per applicazioni fotovoltaiche si è orientata negli ultimi anni verso lo studio delle perovskiti, per lo sviluppo di nuove tipologie di celle solari ad alta efficienza e basso costo; tuttavia, la commercializzazione di tali celle solari è ancora lontana, a causa della loro grande instabilità. L’ossido di lantanio-vanadio (LaVO3), che presenta la struttura cristallina della perovskite, è un materiale molto promettente per applicazioni fotovoltaiche, in quanto potrebbe risolvere il problema della stabilità. Gli obiettivi della tesi sono stati: lo studio delle proprietà ottiche ed elettriche del LaVO3; l’implementazione e l’ottimizzazione di un apparato sperimentale di surface photovoltage spectroscopy (SPS), insieme con lo sviluppo del relativo software di acquisizione dati. L’apparato per SPS è stato implementato con successo, il set-up sperimentale è stato ottimizzato ed è stato sviluppato un software per l’acquisizione dati. Lo studio delle proprietà morfologiche del LaVO3 alla nanoscala, condotto mediante microscopia a forza atomica, ha permesso l’identificazione delle condizioni di deposizione ottimali dei film sottili. Lo studio delle proprietà elettriche, condotto mediante scanning Kelvin probe microscopy, ha permesso la determinazione del valore dell’altezza barriera all’interfaccia LaVO3/ZnO e delle work function di ZnO e LaVO3. Si noti che il valore di work function del LaVO3 non era mai stato riportato prima in letteratura. Le misure SPV sul LaVO3 hanno generato un segnale minore del limite di rilevazione dell’apparato: ciò significa che le coppie elettrone-lacuna fotogenerate non vengono separate e raccolte in modo efficiente. In conclusione, il LaVO3 è noto per avere proprietà ottiche ottimali ed elevata stabilità, che sono vantaggi considerevoli per eventuali dispositivi fotovoltaici. Tuttavia, le misure di SPV hanno chiaramente dimostrato che questo materiale non è ottimale come mezzo per il trasporto di carica

    Nano-scale optical and electrical probes of materials and processes.

    Full text link
    • …
    corecore