105,316 research outputs found

    Close range mini Uavs photogrammetry for architecture survey

    Get PDF
    The survey of historical façades contains several bottlenecks, mainly related to the geometrical structure, the decorative framework, the presence of natural or artificial obstacles, the environment limitations. Urban context presents additional restrictions, binding by ground acquisition activity and leading to building data loss. The integration of TLS and close-range photogrammetry allows to go over such stuff, not overcoming the shadows effect due to the ground point of view. In the last year the massive use of UAVs in survey activity has permitted to enlarge survey capabilities, reaching a deeper knowledge in the architecture analysis. In the meanwhile, several behaviour rules have been introduced in different countries, regulating the UAVs use in different field, strongly restricting their application in urban areas. Recently very small and light platforms have been presented, which can partially overcome these rules restrictions, opening to very interesting future scenarios. This article presents the application of one of these very small RPAS (less than 300 g), equipped with a low-cost camera, in a close range photogrammetric survey of an historical building façade in Bologna (Italy). The suggested analysis tries to point out the system accuracy and details acquisition capacity. The final aim of the paper is to validate the application of this new platform in an architectonic survey pipeline, widening the future application of close-range photogrammetry in the architecture acquisition process

    Innovative strategies for 3D visualisation using photogrammetry and 3D scanning for mobile phones

    Get PDF
    3D model generation through Photogrammetry is a modern overlay of digital information representing real world objects in a virtual world. The immediate scope of this study aims at generating 3D models using imagery and overcoming the challenge of acquiring accurate 3D meshes. This research aims to achieve optimised ways to document raw 3D representations of real life objects and then converting them into retopologised, textured usable data through mobile phones. Augmented Reality (AR) is a projected combination of real and virtual objects. A lot of work is done to create market dependant AR applications so customers can view products before purchasing them. The need is to develop a product independent photogrammetry to AR pipeline which is freely available to create independent 3D Augmented models. Although for the particulars of this research paper, the aim would be to compare and analyse different open source SDK’s and libraries for developing optimised 3D Mesh using Photogrammetry/3D Scanning which will contribute as a main skeleton to the 3D-AR pipeline. Natural disasters, global political crisis, terrorist attacks and other catastrophes have led researchers worldwide to capture monuments using photogrammetry and laser scans. Some of these objects of “global importance” are processed by companies including CyArk (Cyber Archives) and UNESCO’s World Heritage Centre, who work against time to preserve these historical monuments, before they are damaged or in some cases completely destroyed. The need is to question the significance of preserving objects and monuments which might be of value locally to a city or town. What is done to preserve those objects? This research would develop pipelines for collecting and processing 3D data so the local communities could contribute towards restoring endangered sites and objects using their smartphones and making these objects available to be viewed in location based AR. There exist some companies which charge relatively large amounts of money for local scanning projects. This research would contribute as a non-profitable project which could be later used in school curriculums, visitor attractions and historical preservation organisations all over the globe at no cost. The scope isn’t limited to furniture, museums or marketing, but could be used for personal digital archiving as well. This research will capture and process virtual objects using Mobile Phones comparing methodologies used in Computer Vision design from data conversion on Mobile phones to 3D generation, texturing and retopologising. The outcomes of this research will be used as input for generating AR which is application independent of any industry or product

    Development of a Computer Vision-Based Three-Dimensional Reconstruction Method for Volume-Change Measurement of Unsaturated Soils during Triaxial Testing

    Get PDF
    Problems associated with unsaturated soils are ubiquitous in the U.S., where expansive and collapsible soils are some of the most widely distributed and costly geologic hazards. Solving these widespread geohazards requires a fundamental understanding of the constitutive behavior of unsaturated soils. In the past six decades, the suction-controlled triaxial test has been established as a standard approach to characterizing constitutive behavior for unsaturated soils. However, this type of test requires costly test equipment and time-consuming testing processes. To overcome these limitations, a photogrammetry-based method has been developed recently to measure the global and localized volume-changes of unsaturated soils during triaxial test. However, this method relies on software to detect coded targets, which often requires tedious manual correction of incorrectly coded target detection information. To address the limitation of the photogrammetry-based method, this study developed a photogrammetric computer vision-based approach for automatic target recognition and 3D reconstruction for volume-changes measurement of unsaturated soils in triaxial tests. Deep learning method was used to improve the accuracy and efficiency of coded target recognition. A photogrammetric computer vision method and ray tracing technique were then developed and validated to reconstruct the three-dimensional models of soil specimen

    A new protocol for texture mapping process and 2d representation of rupestrian architecture

    Get PDF
    The development of the survey techniques for architecture and archaeology requires a general review in the methods used for the representation of numerical data. The possibilities offered by data processing allow to find new paths for studying issues connected to the drawing discipline. The research project aimed at experimenting different approaches for the representation of the rupestrian architecture and the texture mapping process. The nature of the rupestrian architecture does not allow a traditional representation of sections and projections of edges and outlines. The paper presents a method, the Equidistant Multiple Sections (EMS), inspired by cartography and based on the use of isohipses generated from different geometric plane. A specific paragraph is dedicated to the texture mapping process for unstructured surface models. One of the main difficulty in the image projection consists in the recognition of homologous points between image and point cloud, above all in the areas with most deformations. With the aid of the “virtual scan” tool a different procedure was developed for improving the correspondences of the image. The result show a sensible improvement of the entire process above all for the architectural vaults. A detailed study concerned the unfolding of the straight line surfaces; the barrel vault of the analyzed chapel has been unfolded for observing the paintings in the real shapes out of the morphological context

    Measuring the shape. Performance evaluation of a photogrammetry improvement applied to the Neanderthal skull Saccopastore 1

    Get PDF
    Several digital technologies are nowadays developed and applied to the study of the human fossil record. Here, we present a low-cost hardware implementation of the digital acquisition via photogrammetry, applied to a specimen of paleoanthropological interest: the Neanderthal skull Saccopastore 1. Such implementation has the purpose to semi-automatize the procedures of digital acquisition, by the introduction of an automatically rotating platform users can easily build on their own with minimum costs. We provide all the technical specifications, mostly based on the Arduino UNO™ microcontroller technology, and evaluate the performance and the resolution of the acquisition by comparing it with the CT-scan of the same specimen through the calculation of their shape differences. In our opinion, the replication of the automatic rotating platform, described in this work, may contribute to the improvement of the digital acquisition processes and may represent, in addition, a useful and affordable tool for both research and dissemination

    Airborne laser topographic mapping results from initial joint NASA/US Army Corps of Engineers experiment

    Get PDF
    Initial results from a series of joint NASA/US Army Corps of Engineers experiments are presented. The NASA Airborne Oceanographic Lidar (AOL) was exercised over various terrain conditions, collecting both profile and scan data from which river basin cross sections are extracted. Comparisons of the laser data with both photogrammetry and ground surveys are made, with 12 to 27 cm agreement observed over open ground. Foliage penetration tests, utilizing the unique time-waveform sampling capability of the AOL, indicate 50 cm agreement with photogrammetry (known to have difficulty in foliage covered terrain)

    The survey of the Basilica di Collemaggio in L’Aquila with a system of terrestrial imaging and most proven techniques

    Get PDF
    The proposed job concerns the evaluation of a series of surveys carried out in the context of a campaign of studies begun in 2015 with the objective of comparing the accuracies obtainable with the systems of terrestrial imaging, compared to unmanned aerial vehicle imaging and laser scanner survey. In particular, the authors want to test the applicability of a system of imaging rover (IR), an innovative terrestrial imaging system, that consists of a multi-camera with integrated global positioning system (GPS)/global navigation satellite system (GNSS) receiver, that is very recently released technique, and only a few literature references exist on the specific subject. In detail, the IR consists of a total of 12 calibrated cameras – seven “panorama” and five downward-looking – providing complete site documentation that can potentially be used to make photogrammetric measurements. The data acquired in this experimentation were then elaborated with various software packages in order to obtain point clouds and a three-dimensional model in different cases, and a comparison of the various results obtained was carried out. Following, the case study of the Basilica di Santa Maria di Collemaggio in L’Aquila is reported; Collemaggio is an UNESCO world heritage site; it was damaged during the seismic event of 2009, and its restoration is still in progress

    From survey to fem analysis for documentation of built heritage: The case study of villa revedin-bolasco

    Get PDF
    In the last decade advances in the fields of close-range photogrammetry, terrestrial laser scanning (TLS) and Computer Vision (CV) have enabled to collect different kind of information about a Cultural Heritage objects and to carry out highly accurate 3D models. Additionally, the integration between laser scanning technology and Finite Element Analysis (FEA) is gaining particular interest in recent years for structural analysis of built heritage, since the increasing computational capabilities allow to manipulate large datasets. In this note we illustrate the approach adopted for surveying, 3D modeling and structural analysis of Villa Revedin-Bolasco, a magnificent historical building located in the small walled town of Castelfranco Veneto, in northern Italy. In 2012 CIRGEO was charged by the University of Padova to carry out a survey of the Villa and Park, as preliminary step for subsequent restoration works. The inner geometry of the Villa was captured with two Leica Disto D3a BT hand-held laser meters, while the outer walls of the building were surveyed with a Leica C10 and a Faro Focus 3D 120 terrestrial laser scanners. Ancillary GNSS measurements were also collected for 3D laser model georeferencing. A solid model was then generated from the laser global point cloud in Rhinoceros software, and portion of it was used for simulation in a Finite Element Analysis (FEA). In the paper we discuss in detail all the steps and challenges addressed and solutions adopted concerning the survey, solid modeling and FEA from laser scanning data of the historical complex of Villa Revedin-Bolasco
    corecore