41 research outputs found

    Color-decoupled photo response non-uniformity for digital image forensics

    Get PDF
    The last few years have seen the use of photo response non-uniformity noise (PRNU), a unique fingerprint of imaging sensors, in various digital forensic applications such as source device identification, content integrity verification and authentication. However, the use of a colour filter array for capturing only one of the three colour components per pixel introduces colour interpolation noise, while the existing methods for extracting PRNU provide no effective means for addressing this issue. Because the artificial colours obtained through the colour interpolation process is not directly acquired from the scene by physical hardware, we expect that the PRNU extracted from the physical components, which are free from interpolation noise, should be more reliable than that from the artificial channels, which carry interpolation noise. Based on this assumption we propose a Couple-Decoupled PRNU (CD-PRNU) extraction method, which first decomposes each colour channel into 4 sub-images and then extracts the PRNU noise from each sub-image. The PRNU noise patterns of the sub-images are then assembled to get the CD-PRNU. This new method can prevent the interpolation noise from propagating into the physical components, thus improving the accuracy of device identification and image content integrity verification

    An Analysis of Optical Contributions to a Photo-Sensor's Ballistic Fingerprints

    Full text link
    Lens aberrations have previously been used to determine the provenance of an image. However, this is not necessarily unique to an image sensor, as lens systems are often interchanged. Photo-response non-uniformity noise was proposed in 2005 by Luk\'a\v{s}, Goljan and Fridrich as a stochastic signal which describes a sensor uniquely, akin to a "ballistic" fingerprint. This method, however, did not account for additional sources of bias such as lens artefacts and temperature. In this paper, we propose a new additive signal model to account for artefacts previously thought to have been isolated from the ballistic fingerprint. Our proposed model separates sensor level artefacts from the lens optical system and thus accounts for lens aberrations previously thought to be filtered out. Specifically, we apply standard image processing theory, an understanding of frequency properties relating to the physics of light and temperature response of sensor dark current to classify artefacts. This model enables us to isolate and account for bias from the lens optical system and temperature within the current model.Comment: 16 pages, 9 figures, preprint for journal submission, paper is based on a thesis chapte

    Robustness in blind camera identification

    Get PDF

    Computer Graphic and Photographic Image Classification using Local Image Descriptors

    Get PDF
    With the tremendous development of computer graphic rendering technology, photorealistic computer graphic images are difficult to differentiate from photo graphic images. In this article, a method is proposed based on discrete wavelet transform based binary statistical image features to distinguish computer graphic from photo graphic images using the support vector machine classifier. Textural descriptors extracted using binary statistical image features are different for computer graphic and photo graphic which are based on learning of natural image statistic filters. Input RGB image is first converted into grayscale and decomposed into sub-bands using Haar discrete wavelet transform and then binary statistical image features are extracted. Fuzzy entropy based feature subset selection is employed to choose relevant features. Experimental results using Columbia database show that the method achieves good detection accuracy

    UM NOVO MÉTODO PARA IDENTIFICAÇÃO DE CÂMERA A PARTIR DE IMAGENS DIGITAIS

    Get PDF
    A identificação da câmera responsável pela captura de uma dada imagem pode ser utilizada como indícios de vários tipos de crimes. Essa identificação pode ocorrer com o uso de um método científico que possa determinar qual câmera é a geradora de uma determinada imagem. Cada câmera gera imagens com algumas particularidades, devido à características individuais delas. Inserido nesse contexto, este trabalho foi baseado na criação de um novo método de identificação da câmera geradora a partir de imagens, por meio de estudos e implementação de algoritmos de processamento digital de imagens. Uma nova base de dados também foi gerada para realização de treinamentos e testes do método proposto
    corecore