465 research outputs found

    Phonon Localization in One-Dimensional Quasiperiodic Chains

    Full text link
    Quasiperiodic long range order is intermediate between spatial periodicity and disorder, and the excitations in 1D quasiperiodic systems are believed to be transitional between extended and localized. These ideas are tested with a numerical analysis of two incommensurate 1D elastic chains: Frenkel-Kontorova (FK) and Lennard-Jones (LJ). The ground state configurations and the eigenfrequencies and eigenfunctions for harmonic excitations are determined. Aubry's "transition by breaking the analyticity" is observed in the ground state of each model, but the behavior of the excitations is qualitatively different. Phonon localization is observed for some modes in the LJ chain on both sides of the transition. The localization phenomenon apparently is decoupled from the distribution of eigenfrequencies since the spectrum changes from continuous to Cantor-set-like when the interaction parameters are varied to cross the analyticity--breaking transition. The eigenfunctions of the FK chain satisfy the "quasi-Bloch" theorem below the transition, but not above it, while only a subset of the eigenfunctions of the LJ chain satisfy the theorem.Comment: This is a revised version to appear in Physical Review B; includes additional and necessary clarifications and comments. 7 pages; requires revtex.sty v3.0, epsf.sty; includes 6 EPS figures. Postscript version also available at http://lifshitz.physics.wisc.edu/www/koltenbah/koltenbah_homepage.htm

    Wave transmission, phonon localization and heat conduction of 1D Frenkel-Kontorova chain

    Full text link
    We study the transmission coefficient of a plane wave through a 1D finite quasi-periodic system -- the Frenkel-Kontorova (FK) model -- embedding in an infinite uniform harmonic chain. By varying the mass of atoms in the infinite uniform chain, we obtain the transmission coefficients for {\it all} eigenfrequencies. The phonon localization of the incommensurated FK chain is also studied in terms of the transmission coefficients and the Thouless exponents. Moreover, the heat conduction of Rubin-Greer-like model for FK chain at low temperature is calculated. It is found that the stationary heat flux J(N)NαJ(N)\sim N^{\alpha}, and α\alpha depends on the strength of the external potential.Comment: 15 pages in Revtex, 8 EPS figure

    Heat conduction and phonon localization in disordered harmonic crystals

    Get PDF
    We investigate the steady state heat current in two and three dimensional isotopically disordered harmonic lattices. Using localization theory as well as kinetic theory we estimate the system size dependence of the current. These estimates are compared with numerical results obtained using an exact formula for the current given in terms of a phonon transmission function, as well as by direct nonequilibrium simulations. We find that heat conduction by high-frequency modes is suppressed by localization while low-frequency modes are strongly affected by boundary conditions. Our {\color{black}heuristic} arguments show that Fourier's law is valid in a three dimensional disordered solid except for special boundary conditions. We also study the pinned case relevant to localization in quantum systems and often used as a model system to study the validity of Fourier's law. Here we provide the first numerical verification of Fourier's law in three dimensions. In the two dimensional pinned case we find that localization of phonon modes leads to a heat insulator.Comment: 5 pages, 3 figure
    corecore