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Abstract. - We investigate the steady state heat current in two and three dimensional isotopically
disordered harmonic lattices. Using localization theory as well as kinetic theory we estimate the
system size dependence of the current. These estimates are compared with numerical results
obtained using an exact formula for the current given in terms of a phonon transmission function,
as well as by direct nonequilibrium simulations. We find that heat conduction by high-frequency
modes is suppressed by localization while low-frequency modes are strongly affected by boundary
conditions. Our heuristic arguments show that Fourier’s law is valid in a three dimensional
disordered solid except for special boundary conditions. We also study the pinned case relevant to
localization in quantum systems and often used as a model system to study the validity of Fourier’s
law. Here we provide the first numerical verification of Fourier’s law in three dimensions. In the
two dimensional pinned case we find that localization of phonon modes leads to a heat insulator.

Transport in random media is a topic of great current
interest [1–7]. Here we study the effect of isotopic mass
disorder and boundary conditions on heat conduction and
localization in two (2D) and three (3D) dimensional har-
monic crystals, where the properties of the ordered system
are known exactly. These are systems of Nd (d = 2, 3)
atoms in contact, at their surfaces perpendicular to the
x-axis, with heat reservoirs at different temperatures. We
shall focus mainly on the dependence of the heat flux J
on N . When Fourier’s law holds then J ∼ N−1 but this
is known to be violated in computer simulations [8] and
some experiments [9, 10] in 1D and 2D systems where
one finds J ∼ N−µ with µ 6= 1. Earlier work [7,11] on
heat conduction in glassy harmonic systems computed the
frequency-dependent thermal diffusivity using the Green-
Kubo formula for different system sizes. However their
study did not directly address the question of asymptotic
size dependence of conductivity.

We will first describe the precise model studied, then
give our heuristic arguments for calculating the N depen-
dence of J and finally present the numerical results.

We consider simple cubic lattices with displacements at

each lattice site n (nν = 1, 2, ..., N for ν = 1, 2, ..., d) given
by a scalar variable xn. In the harmonic approximation
the system Hamiltonian is given by

H =
∑
n

mn

2
ẋ2
n +

N−1∑
n1=1

∑
n′,ê

k

2
(xn − xn+ê)2

+
∑
n′

k′

2
(x2

1,n′ + x2
N,n′) +

∑
n

ko
2
x2
n (1)

where ê refers to the d unit vectors and we have denoted
n = (n1,n

′). We impose periodic boundary conditions
(BCs) in the directions ν = 2, 3, ..., d and consider two
different BCs in the direction of heat conduction (ν = 1):
(i) fixed BCs k′ > 0 and (ii) free BCs k′ = 0. Pinning
refers to the case with ko > 0. We consider binary mass
disorder with equal number of particles of masses m̄ −∆
and m̄+ ∆ distributed randomly on the lattice sites. The
equations of motion of particles in the bulk ( 1 < n1 < N
) are given by: mnẍn = −

∑
±ê k(xn − xn+ê) − koxn.

The particles at the surfaces n1 = 1 and n1 = N are
connected to heat reservoirs, at temperatures TL and TR
respectively. These are modeled by white noise Langevin
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equations. This means that particles at n1 = 1 and n1 =
N , have additional forces given respectively by (−k′xn −
γẋn + ηLn ) and (−k′xn − γẋn + ηRn ), where ηL and ηR

are noise terms with strengths proportional to TL and TR
respectively and to the friction constant γ. If we model
the heat reservoirs themselves by infinite ordered harmonic
crystals then Langevin type equations for the system [12]
are obtained on eliminating the bath degrees of freedom.
The two different BCs then emerge naturally. Fixed BCs
correspond to reservoirs with properties different from the
system (e.g. different spring constants) while free BCs
correspond to the case where the reservoir is simply an
extension of the system (without disorder) [6, 13, 14]. We
note that fixed BCs are more realistic.

In the nonequilibrium steady state, the heat current per
unit area (assuming unit lattice spacing length) from the
left to the right reservoir is given by [12,15]:

J =
∆T

2πNd−1

∫ ∞
0

dωT (ω) , (2)

where ∆T = TL − TR and T (ω) is the transmission co-
efficient of phonons at frequency ω from the left to the
right reservoir. Our interest here are in the disorder av-
eraged transmission T (ω) = [T (ω)]/Nd−1 and the current
J = [J ].

The phonon and electron localization problems are
closely related. For the system without baths consider the
displacement field an(p) for the pth normal mode. This
satisfies the equation: mnω

2
pan = (2d+ ko)an −

∑
ê an+ê.

By introducing variables ψn(p) = m
1/2
n an(p), vn = (2d +

ko)/mn and tn,l = 1/(mnml)
1/2 for nearest neighbour

sites n, l this equation transforms to a Schrodinger-type
equation ω2

pψn(p) = vnψn(p) −
∑

l tn,lψl(p) . The near-
est neighbour hopping tn,l and on-site energies vn are now
correlated random variables. For the unpinned case with
ko = 0, translation invariance gives rise to extended modes
at low frequencies. The pinned case has no translational
invariance and is closer to the usual electron localization
problem.

The effect of disorder on heat conduction in a harmonic
crystal manifests itself in two ways: (i) Anderson local-
ization [16] of phonon modes of frequency ω will make
them non-conducting, (ii) non-localized phonons will be
scattered by the impurities. From Eq. (2) the net current
is given by the integrated transmission and for large sys-
tem sizes the integral is over the range of normal modes.
It is natural to classify normal modes as localized, diffu-
sive or ballistic. For modes localized on a length scale `,
T (ω) ∼ e−N/`. This ` depends on the phonon frequency

and low frequency modes for which `(ω)
>∼ N will therefore

be carriers of the heat current. Diffusive modes are spa-
tially extended but non-periodic and T (ω) ∼ 1/N . Bal-
listic modes are extended and approximately periodic and
their transmission is N -independent.

A renormalization group study in a disordered contin-
uum elastic model by John etal [17] found that in 1D and

2D all non-zero frequency phonons are localized. They
studied the spreading of an energy pulse to define a fre-
quency dependent diffusivity D0(ω). From the behaviour
of D0(ω) under renormalization one can obtain a differ-
ential recursion relation for the resistivity. This relation
shows that in the large system size limit the RG flow is
towards infinity for dimensions ≤ 2 in contrast to d = 3
where the flow is towards zero as long as ω is less than
some fixed value, independent of system size. Hence all
finite-frequency modes in one and two dimensions are lo-
calized. From the differential recursion relations one finds
that for d = 1 and d = 2 the localization length in ω → 0
limit diverges as ∼ 1/ω2 and ∼ e1/ω2

respectively. In 3D
there exists a frequency, independent of system size, above
which all states are localized while states below that fre-
quency are extended. Hence for a system of size N there
will be a cut-off frequency ωLc (which depends on N for
d ≤ 2) above which all the modes are localized. In differ-
ent dimensions ωLc is given by

ωLc ∼ N−1/2 for d = 1

∼ [log(N)]−1/2 for d = 2 (3)

∼ nonzero value independent of N for d = 3

For extended modes with ω < ωLc we use kinetic theory
to determine the cut-off frequency ωKc below which states
are ballistic. Rayleigh scattering of phonons gives a mean
free path `K(ω) ∼ ω−(d+1) in d-dimensions. This gives

ωKc = N−1/(d+1) below which `K(ω)
>∼ N .

The net current in the system consists of both ballistic

[JB ∼
∫ ωK

c

0
dωT (ω)] and diffusive [JD ∼

∫ ωL
c

ωK
c
dωT (ω)) con-

tributions, J = JB + JD. One other crucial observation,
consistent with the numerics, is that T (ω) in the ballistic
region has the same form as for an ordered system, which
is sensitive to boundary conditions.

In 1D both ωKc , ω
L
c ∼ N−1/2 and numerical studies

show that all extended states are ballistic [18]. For free

BC T (ω) → const. as ω → 0 and hence J ∼
∫ N−1/2

0
dω ∼

N−1/2. For fixed BC T (ω) ∼ ω2 leading to J ∼ N−3/2.
The dependence of the form of T (ω) on pinning was dis-
cussed in [19] in detail. Thus surprisingly one finds a
strong dependence on BCs. In the presence of pinning, the
low frequency modes are removed and J ∼ e−cN . These
results agree with earlier rigorous and numerical work on
this system [13, 15, 18, 20]. We now calculate the asymp-
totic system size dependence in 2D and 3D.

Unpinned lattice: To find the ballistic contribution we
note that for the ordered lattice T (ω) ∼ ωd−1 as ω → 0
for free BCs and as T (ω) ∼ ωd+1 for fixed BC. This can be
seen in the following way. We write n = (n1,n

′) and q =
(q2, q3, ..., qd) with qα = 2πn

N where n goes from 1 to N .

Now if we define xn1
(q) = N−(d−1)/2

∑
n′ x(n1,n′) e

iq.n′ ,
then one can show that, for each q, xl1(q) satisfies a
Langevin equation corresponding to a one-dimensional
Hamiltonian with the onsite spring constant ko replaced
by λ(q) = ko + 2k(d − 1 −

∑
α=2,d cos(qα)). This means
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Fig. 1: Plot of the N -dependence of disorder averaged current
J . (a) 2D: Inset shows result for pinned case. For free BC
∆ = 0.8 and for fixed BC ∆ = 0.95. For pinned case ∆ =
0.4, ko = 10.0. (b) 3D: For all cases ∆ = 0.8 and for pinned
case ko = 10.0. Error bars show standard deviations due to
sample-to-sample fluctuations and are very small except in the
2D pinned case.

that the problem of heat conduction in a d-dimensional or-
dered harmonic lattice can be related to heat conduction
across Nd−1 independent ordered harmonic chains with
different onsite potentials [21–23]. Hence the transmission
coefficient T (ω) for the d-dimensional lattice can be ex-
pressed as a sum of the transmission coefficients of the 1D
ordered chains. Using this result and the analytic form of
the transmission coefficient for the 1D chain [23] we find
in the N →∞ and ω → 0 limit

T (ω) ∼ ωd−1 for open boundary condition

∼ ωd+1 for fixed boundary condition.

Hence we get the ballistic contribution to the total current

density (for the unpinned case) as: JB ∼
∫ ωK

c

0
dω ωd−1 ∼

N−d/(d+1) for free BC and JB ∼
∫ ωK

c

0
dω ωd+1 ∼

N−(d+2)/(d+1) for fixed BC. In 2D using kinetic theory

and localization theory we expect localized modes for ω
>∼

ωLc = (lnN)−1/2, ballistic modes for ω
<∼ ωKc = N−1/3 and

diffusive modes for ωKc
<∼ ω

<∼ ωLc . The diffusive contri-
bution to total current will scale as JD ∼ (lnN)−1/2N−1.
As argued above, the ballistic contribution depends on
BCs with JB ∼ N−4/3 for fixed BC and JB ∼ N−2/3 for
free BC. Hence, adding all the contributions, we conclude

d = 2 d = 3
Heuristic Numerical Heuristic Numerical

Pinned exp (−bN) N−3.7 N−1 N−1.0

Fixed N−1(lnN)−1/2 N−0.75 N−1 N−0.75

Free N−2/3 N−0.6 N−3/4 N−0.71

Table 1: The table gives the N dependence of J and sum-
marizes the main results of the paper. The error bar for the
numerically obtained exponent values is of the order ±0.02.
N.B: The system sizes used may be far from asymptotic.

that asymptotically: J ∼ (lnN)−1/2N−1 for fixed BC and
J ∼ N−2/3 for free BC. In 3D we expect that ωLc is in-
dependent of N and states with ω > ωLc are localized.

Extended modes with ω
<∼ ωKc = N−1/4 are ballistic while

those with ωKc
<∼ ω

<∼ ωLc are diffusive. The contribution
from the diffusive modes scales as JD ∼ N−1 while the
ballistic contribution again depends on boundary condi-
tions with JB ∼ N−5/4 for fixed BC and JB ∼ N−3/4 for
free BC. We conclude that asymptotically: J ∼ N−1 for
fixed BC and J ∼ N−3/4 for free BC.

Pinned lattice: There is now a gap in the spectrum,
starting from ω = 0, and thus there are no low frequency
ballistic modes. In 2D localization theory then tells us
that for sufficiently large N , all non-zero frequency modes
become localized, hence we should get an insulator. In 3D
there is a finite band of diffusive states and therefore we
expect a normal conductor satisfying Fourier’s law.

Numerical results: We now check the above predic-
tions through extensive numerical calculations. We mea-
sure force-constants in units of k, masses in units of the
average mass m̄, time in units of the inverse frequency
Ω−1 = (m̄/k)1/2, displacements in units of the lattice
spacing a, friction constant γ in units of m̄Ω, and tem-
perature in units of m̄a2Ω2/kB . We set k = 1, m̄ = 1 and
we fixed ∆T = 1, γ = 1. For fixed BCs and pinned cases
k′ = 1. Different values of the mass variance ∆ and the
on-site spring constant ko were studied for 2D and 3D lat-
tices of different sizes [24]. Here we report results for cases
with the strongest disorder. The transmission coefficient
TN (ω) can be expressed in terms of phonon Green’s func-
tions and can be accurately determined numerically using
a transfer matrix representation [24]. By performing a
discrete sum over the transmitting range of frequencies
we evaluate the integration in Eq. (2) to obtain J . For
N ≥ 64 in 3D the transfer matrix method has numerical
problems and in those cases we performed nonequilibrium
simulations to find the heat current.

We also studied the properties of the normal modes of
the isolated harmonic lattices with fixed BCs. We measure
the degree of localization of a given mode by the inverse
participation ratio defined as P−1 =

∑
n a

4
n/(

∑
n a

2
n)2.

For an extended state P−1 is of order O(N−d) while for a
localized state, it is O(1).

In Fig. (1) we show the N -dependence of the disorder
averaged current J = [J ] in d = 2, 3. Our findings and the
comparison with the heuristic predictions are summarized
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Fig. 2: (i) Plot of T (ω). (ii) Plot of NT (ω). The range of frequencies for which T (ω) ∼ 1/N is indicated by arrowed lines and
corresponds to diffusive modes . (iii) Plot of ρ(ω) for binary mass ordered lattice and single disordered sample. (iv) Plot of
Nd−1 × P−1 for single samples. Non-collapse of plots for different N in (iv) indicate localized states.

in Table (1). The results for the free BC case are consistent
with the heuristic predictions while those for fixed BC
show significant deviations. For the pinned system we
obtain, in agreement with the theoretical prediction. In
2D we find a strong decay of the current with N with
µ = 3.7 suggesting that at larger system sizes we will get
an exponential decay corresponding to a heat insulator. In
3D we find µ = 1 implying that the system is a normal heat
conductor. For the binary mass distribution we do not
find a transition to insulating behaviour with increasing
disorder.

The N -dependence of the disorder-averaged phonon
transmission coefficient T (ω) = [TN (ω)]/Nd−1 sheds addi-
tional light on the nature of phonons in different frequency
regions. For the case of fixed BCs we show in Fig. (2)
results for transmission, density of states and inverse par-
ticipation ratios and from these we can see the range of
allowed modes and their degree of localization. By plot-
ting NT (ω) we identify the diffusive regime. From plots
(iii-iv) we see that in both 2D and 3D there are effectively
two phonon bands, a remnant of the ordered binary mass
case. In 2D the upper band is fully localized while in 3D

there is a small number of localized states near the band
edges. In 2D the lower band has extended states below a
cut-off ωLc which decreases slowly with N . In both 2D and
3D the lower band has diffusive and ballistic states and
the crossover scale ωKc decreases with system size. The ex-
pected N−dependence of ωKc and ωLc are difficult to verify
at these system sizes.

For the case of free BCs, we find that the values of T (ω)
in the diffusive regime matches with those for fixed BCs
but are completely different in the ballistic regime. This is
seen in Fig. (3) where we plot the effective mean free path
leff(ω) = NT (ω)/ωd−1 in the low-frequency region. The
difference between free and fixed BCs is larger in 2D than
in 3D and explains the similar feature observed for the J
values in Fig. (1). For free BC, leff is roughly consistent
with the kinetic theory prediction l−1

eff ∼ N−1 + `K
−1(ω)

but the behaviour for fixed BC is very different. The inset
of Fig. (3) plots leff for the equal mass ordered case and
we find that in the ballistic regime it is very close to the
disordered case, an input that we used in the heuristic
derivation. The oscillations in the transmission for fixed
BC arise from scattering and interference of waves at the
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Fig. 3: Plot of the effective mean-free path leff = NT (ω)/ωd−1

in (a) 2D and (b) 3D with ∆ = 0.8. The insets show `eff for
the ordered lattices with a single mass. An ω−(d+1) behaviour
is observed in a small part of the diffusive region.The fixed BC
data is highly oscillatory and has been smoothed.

interfaces. For the fully pinned case we find T (ω) ∼ e−bN
in 2D and as T (ω) ∼ 1/N in 3D [24].

In summary the analytic arguments show that the con-
tribution of ballistic modes to conduction is dependent on
BCs and is strongly suppressed for fixed BCs, the more
realistic case. In 3D this leads to diffusive modes domi-
nating for large system sizes and Fourier’s law is satisfied.
Thus a finite heat conductivity may be obtained without
invoking anharmonicity as is usually believed to be neces-
sary [25]. Our numerical results verify the predictions for
free BCs and we believe that much larger system sizes are
necessary to verify the fixed BC results ( this is also the
case in 1D [18]). It is also possible that the assumptions
made to predict the asymptotic N dependence of current
is not correct. We are uncertain at present whether the
disagreements are due to finite size effects or to the inade-
quacy of the theory. A number of recent experiments have
directly observed localization of electrons [4], photons [2],
matter waves [5] and acoustic waves [3]. Our study shows
clearly that the ballistic and diffusive contributions to the
heat current would make it difficult to observe localization
effects in heat conduction studies [6,14]. Our study of the
pinned system gives us a clearer understanding of the role
of low frequency modes in giving rise to diverging ther-
mal conductivity and provides the simplest example of a

3D deterministic system with diffusive transport. The 2D
pinned system is a heat insulator and thin films attached
on insulating substrates may show such behaviour.
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