3 research outputs found

    RNA-seq analysis of the influence of anaerobiosis and FNR on Shigella flexneri.

    Get PDF
    BACKGROUND: Shigella flexneri is an important human pathogen that has to adapt to the anaerobic environment in the gastrointestinal tract to cause dysentery. To define the influence of anaerobiosis on the virulence of Shigella, we performed deep RNA sequencing to identify transcriptomic differences that are induced by anaerobiosis and modulated by the anaerobic Fumarate and Nitrate Reduction regulator, FNR. RESULTS: We found that 528 chromosomal genes were differentially expressed in response to anaerobic conditions; of these, 228 genes were also influenced by FNR. Genes that were up-regulated in anaerobic conditions are involved in carbon transport and metabolism (e.g. ptsG, manX, murQ, cysP, cra), DNA topology and regulation (e.g. ygiP, stpA, hns), host interactions (e.g. yciD, nmpC, slyB, gapA, shf, msbB) and survival within the gastrointestinal tract (e.g. shiA, ospI, adiY, cysP). Interestingly, there was a marked effect of available oxygen on genes involved in Type III secretion system (T3SS), which is required for host cell invasion and pathogenesis. These genes, located on the large Shigella virulence plasmid, were down regulated in anaerobiosis in an FNR-dependent manner. We also confirmed anaerobic induction of csrB and csrC small RNAs in an FNR-independent manner. CONCLUSIONS: Anaerobiosis promotes survival and adaption strategies of Shigella, while modulating virulence plasmid genes involved in T3SS-mediated host cell invasion. The influence of FNR on this process is more extensive than previously appreciated, although aside from the virulence plasmid, this transcriptional regulator does not govern expression of genes on other horizontally acquired sequences on the chromosome such as pathogenicity islands

    Evaluation by real-time PCR of the expression of S. flexneri virulence-associated genes ospB and phoN2 under different genetical background

    No full text
    Under conditions of activated type III secretion Shigella flexneri up-regulates the expression of numerous genes, including the virulence plasmid (pINV)-encoded ospB and phoN2 genes. ospB and phoN2 are virulence-associated genes which are part of a bicistronic transcriptional unit encoding OspB, a protein (effector) of unknown function secreted by the type III secretion (TTS) apparatus, and PhoN2 (apyrase or ATP-diphosphohydrolase), a periplasmic protein involved in polar IcsA localization on the surface of S. flexneri. In this work we used real-time PCR to measure transcription of ospB and phoN2 of wild-type S.flexneri strain M90T as well as of derivative mutants impaired in definite virulence traits. The results obtained confirmed and extended previous reports indicating that the expression of ospB and phoN2 genes is modulated in a virB-dependent, mxiE-independent manner under conditions of non-activated secretion, while their expression is considerably induced in a in-WE-dependent manner under conditions of activated secretion. That the expression of the ospB-phoN2 operon is up-regulated in condition of activated secretion, indicates that probably the expression of these two genes might be important, especially during the later stages of infection of S. flexneri

    Evaluation by real-time PCR of the expression of S. flexneri virulence-associated genes ospB and phoN2 under different genetical backgrounds

    No full text
    Abstract Under conditions of activated type III secretion Shigella flexneri up-regulates the expression of numerous genes, including the virulence plasmid (pINV)-encoded ospB and phoN2 genes. ospB and phoN2 are virulence-associated genes which are part of a bicistronic transcriptional unit encoding OspB, a protein (effector) of unknown function secreted by the type III secretion (TTS) apparatus, and PhoN2 (apyrase or ATP-diphosphohydrolase), a periplasmic protein involved in polar IcsA localization on the surface of S. flexneri. In this work we used real-time PCR to measure transcription of ospB and phoN2 of wild-type S. flexneri strain M90T as well as of derivative mutants impaired in definite virulence traits. The results obtained confirmed and extended previous reports indicating that the expression of ospB and phoN2 genes is modulated in a virB-dependent, mxiE-independent manner under conditions of non-activated secretion, while their expression is considerably induced in a mxiE-dependent manner under conditions of activated secretion. That the expression of the ospB-phoN2 operon is up-regulated in condition of activated secretion, indicates that probably the expression of these two genes might be important, especially during the later stages of infection of S. flexner
    corecore