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RNA-seq analysis of the influence of anaerobiosis
and FNR on Shigella flexneri
Marta Vergara-Irigaray1,2, Maria C Fookes3, Nicholas R Thomson3 and Christoph M Tang1,2*

Abstract

Background: Shigella flexneri is an important human pathogen that has to adapt to the anaerobic environment in
the gastrointestinal tract to cause dysentery. To define the influence of anaerobiosis on the virulence of Shigella, we
performed deep RNA sequencing to identify transcriptomic differences that are induced by anaerobiosis and
modulated by the anaerobic Fumarate and Nitrate Reduction regulator, FNR.

Results: We found that 528 chromosomal genes were differentially expressed in response to anaerobic conditions;
of these, 228 genes were also influenced by FNR. Genes that were up-regulated in anaerobic conditions are involved in
carbon transport and metabolism (e.g. ptsG, manX, murQ, cysP, cra), DNA topology and regulation (e.g. ygiP, stpA, hns),
host interactions (e.g. yciD, nmpC, slyB, gapA, shf, msbB) and survival within the gastrointestinal tract (e.g. shiA, ospI, adiY,
cysP). Interestingly, there was a marked effect of available oxygen on genes involved in Type III secretion system (T3SS),
which is required for host cell invasion and pathogenesis. These genes, located on the large Shigella virulence plasmid,
were down regulated in anaerobiosis in an FNR-dependent manner. We also confirmed anaerobic induction of csrB
and csrC small RNAs in an FNR-independent manner.

Conclusions: Anaerobiosis promotes survival and adaption strategies of Shigella, while modulating virulence plasmid
genes involved in T3SS-mediated host cell invasion. The influence of FNR on this process is more extensive than
previously appreciated, although aside from the virulence plasmid, this transcriptional regulator does not govern
expression of genes on other horizontally acquired sequences on the chromosome such as pathogenicity islands.

Background
Shigella flexneri is a Gram-negative bacterium that causes
dysentery, an acute human rectocolitis that usually results
in destruction of the intestinal mucosa and bloody diar-
rhoea. The ability of this pathogen to invade epithelial
cells at the colonic and rectal mucosal surface is a key de-
terminant in the establishment of the disease. This is me-
diated by a Type III secretion system (T3SS) encoded on
the large Shigella virulence plasmid [1,2]. The T3SS acts
like a molecular syringe that delivers molecules directly
from the bacterial cytoplasm into host cells via a needle-
like structure [1,2]. However, before the bacterium reaches
the large intestine and invades mucosal epithelial cells,
Shigella must successfully survive the hostile conditions
found in the gastrointestinal tract. Therefore the capacity

of the bacterium to adapt to anaerobiosis, changes in pH,
resist antimicrobial peptides, and acquire nutrients is es-
sential for its pathogenesis [3,4].
Anaerobiosis is known to influence the virulence of

several enteric pathogens including Shigella, Escherichia
coli, Salmonella spp., Vibrio cholerae and Yersinia enter-
ocolitica [5-13]. In particular, S. flexneri has been shown
to be primed for invasion in anaerobic conditions, in
which it expresses longer T3SS needles while reducing
Ipa (invasion plasmid antigen) effector secretion; this re-
sults from FNR-mediated repression of the virulence
plasmid genes, spa32 and spa33 [7]. FNR is a major
regulator of anaerobic metabolism that is inactivated by
the presence of oxygen. Its function depends on the in-
tegrity of its O2-sensitive [4Fe–4S] cluster, which is re-
quired for FNR dimerization and thence site-specific
DNA binding and transcriptional regulation [14]. One
RNA deep sequencing (RNA-seq) and several microarray
studies have been performed to characterise the extent
of the FNR regulon in E. coli and other Gram negative
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pathogens such as Salmonella enterica and Neisseria
gonorrhoeae [15-20]. In E. coli, there were significant dis-
crepancies between studies even when the same strain
was examined. However some differences could be at-
tributed to the use of media containing high levels of
glucose, which represses expression from some FNR-
activated promoters, and the delayed growth rate of
mutants lacking FNR compared with wild-type strains
under anaerobic conditions [16].
Here we define the regulatory role of oxygen and FNR

in S. flexneri. We have applied two powerful whole-
transcriptome approaches, RNA-seq complemented with
Flow cell Reverse Transcription sequencing (FRT-seq),
in which there is no amplification during library prepar-
ation, to quantify differences in gene expression induced
by anaerobiosis and to define the contribution of FNR in
this process. We found that Shigella grown anaerobically
exhibits global transcriptional changes compared to
when grown aerobically, with marked changes in meta-
bolic and transport genes, as well as those involved in
regulatory and virulence functions. Importantly, transcrip-
tion from the Shigella virulence plasmid is extensively
modified in anaerobiosis, with most of T3SS-related genes
being down regulated in the absence of oxygen in an
FNR-dependent manner, demonstrating that this highly
conserved regulator of metabolism also controls the
horizontally-acquired virulence genes on the plasmid,
but not on the chromosome, in this important human
pathogen.

Results
Growth conditions and RNA sequencing strategies
To determine the response of Shigella to anaerobiosis
and the role of FNR in this process, we employed RNA-
seq to compare the transcriptional profiles of wild type
S. flexneri M90T and its Δfnr mutant grown in Luria-
Bertani (LB) medium in the presence and absence of
oxygen. Constantinidou et al. designed a supplemented,
minimal salts medium (including LB) in which an E. coli
fnr mutant exhibited similar growth as the parental
strain in the absence of oxygen [16]. However, this
medium did not support the growth of S. flexneri M90T.
On the other hand, enriched-glucose media have been
shown to repress some FNR-activated promoters [16].
Therefore, we chose LB with no added glucose for our
experiments. Particular attention was paid to ensure that
the culture volume, agitation, temperature and the
growth stage of bacteria did not differ in aerobic and an-
aerobic conditions. Cultures were grown to an Optical
Density at 600 nm (OD600) of 0.2 to avoid a reduction in
the concentration of dissolved oxygen tension and total
depletion of sugars that occurs during exponential
growth [21,22]. Furthermore until reach OD600 of 0.2
under anaerobiosis, there was no obvious delay in

growth rate of the Δfnr mutant in relation to the wild-type
strain (See Additional file 1: Figure S1). Three biological
replicates were performed per strain in each condition,
and differential expression between conditions was ana-
lysed with the DESeq R statistical package.
To assess the reproducibility of results obtained with

RNA-seq data and to further characterise the role of
FNR, the Shigella FNR regulon under anaerobiosis was
also examined using FRT-seq, an alternative sequencing
approach in which cDNA synthesis is performed on the
sequencing flowcell thereby avoiding the possible PCR
biases generated during library preparation using standard
RNA-seq methods [23]. FRT-seq confirmed 77% of the
genes found differentially expressed by RNA-seq, showing
a robust concordance between the two techniques. Due to
its higher sensitivity, FRT-seq detected more genes whose
transcription was significantly influenced by the absence
of FNR than RNA-seq (See Additional file 1: Table S2). A
complete catalogue of significant differences is shown
in Additional material (See Additional file 1: Tables S1
and S2) as well as a summary of the mapping statistics
(See Additional file 1: Table S3). To confirm the results
obtained by global analysis of the transcriptional profile,
we performed strand-specific qRT-PCR to analyse mRNA
levels of several genes found to be differentially expressed
under anaerobic and aerobic growth conditions.

Identification of novel chromosomal genes influenced by
the absence of oxygen in S. flexneri
Analysis of the RNA-seq data revealed that 528 chromo-
somal genes were differentially expressed by wild-type
S. flexneri M90T grown under anaerobic conditions
compared with aerobic conditions, with 363 genes being
up-regulated, and 165 genes down-regulated. Additional
file 1: Table S1 shows these genes classified into functional
categories based on the database of Clusters of Ortholo-
gous Groups (COGs) [24]. As expected, most of the genes
differentially expressed were related to energy production
and metabolism (53%). The remaining genes were in-
volved in cellular processes and signalling (15%), infor-
mation storage and processing (8%) or were poorly
characterized (24%). RNA-seq data also showed that from
the above 528 differentially expressed genes, 228 genes
(43%) were influenced by the absence of FNR under an-
aerobic conditions (See Additional file 1: Table S1).
Importantly the majority of genes that we found to be

anaerobically induced/repressed have been identified in
previous microarray studies with other enteric pathogens
examining the effect of oxygen on the transcriptome
and/or the two main anaerobic regulators, FNR and
ArcA [6,16-20,25]. Consistent with previous work, we
found increased expression of genes involved in anoxic
carbon metabolism (focA-pfl, yfiD, fdnG, gldA, aspA,
fumB, ansB), respiratory pathways (glpABC, nap, nir,
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ccm, nrfABC, frd), production of hydrogenases (hyb, hya,
hyc, hyp), fermentation (adhE, ackA-pta, fdhF) and acid
response (adiA, adiY, yjdE, gadA, hdeAB) under anaero-
biosis (Additional file 1: Table S1) [6,16-18,20,25,26].
Our analysis also identified several anaerobically re-
pressed genes that have been previously characterised
[6,16-20,25]. These genes encode enzymes of the tricarb-
oxylic acid cycle (ace, gltA, acn, icdA, sdh), aerobic dehy-
drogenases (glpD, betBA, gcd, aldA), transhydrogenases
(udhA) and iron acquisition systems (exb, iuc, iutA, sit,
suf, fep, fhu), and others (Additional file 1: Table S1)
[6,16-18,20,25,27,28].
The sensitivity of the direct sequencing approaches,

RNA-seq and FRT-seq, compared with array-based
methods enabled us to extend the repertoire of Shigella
genes modulated by ambient oxygen. Table 1 shows all
genes influenced by the presence of oxygen and not de-
tected in previous microarray studies on E. coli and S.
flexneri [6,16-18,20,25]. The effect of FNR mutation on
the transcription of previous genes under anaerobiosis
(assessed by RNA-seq and FRT-seq) is also shown in
Table 1. Several members of the phosphoenolpyruvate–
carbohydrate phosphotransferase system (PTS), involved
in the transport and phosphorylation of sugars, were up-
regulated under anaerobic conditions. Examples include
ptsHI, which encode the general PTS components phos-
phohistidine carrier protein (HPr) and Enzyme I (EI) re-
spectively, and sugar-specific PTS components like ptsG
and manXYZ (involved in glucose transport), treBC (tre-
halose transport and hydrolysis), mtlA (mannitol) and
murQP that contribute to the uptake and catabolism of
N-acetylmuramic acid [29-32]. Of note, the murQP op-
eron, which is also involved in peptidoglycan recycling,
showed an FNR-dependent expression pattern (Table 1,
Figure 1A) [31].
The expression of other genes involved in transport dis-

played altered expression in anaerobiosis. For instance,
emrD, coding for a drug transporter, cysP, involved in the
binding and uptake of sulfate and thiosulfate, yjcE, coding
for a Na+/H+ exchanger, ybgH, which encodes a peptide
transporter and genes involved in nucleoside transport
and catabolism (tsx, nupC, nupG and udp) are induced in
anaerobiosis (Table 1, Figure 1A) [33-40].
We found several metabolic genes induced under an-

aerobic growth such as cra, coding for the catabolite
repressor/activator protein, Cra, tpiA, encoding a key
enzyme of the gluconeogenic and glycolytic pathways,
gapA, involved in glycolysis, yehU/yehT, coding for a two
component system involved in responses to carbon star-
vation, malT, the transcriptional activator of the genes
responsible for uptake and metabolism of maltodextrins
and proA, which encodes an enzyme in proline biosyn-
thesis [41-47]. The expression of these genes was not
FNR-dependent (Table 1, Figure 1A).

In addition to metabolism, we observed anaerobic up-
regulation of: genes involved in stress response such as
cspC; genes coding for outer membrane proteins
(OMPs) such as NmpC, OmpA and SlyB; genes with
global regulatory functions such as yjgD that codes for
RraB, which interacts with the endonuclease RNase E;
yfiA, encoding a ribosome-associated protein that
inhibits protein translation; and yejK, hns and its paralo-
gue stpA coding for nucleoid-associated proteins respon-
sible for chromosomal DNA compaction and global
gene regulation [48-56]. Interestingly, anaerobic induc-
tion of cspC, nmpC, slyB, yjgD, hns and stpA was
dependent, at least in part, on FNR (Table 1, Figure 1B).
Anaerobiosis can also down-regulate transcription. This
is the case for fruBKA, encoding the fructose PTS [29]
(Table 1, Figure 2).
The analysis of genes known to be influenced by an-

aerobiosis revealed further functions of FNR. This is
the case for ygiP, encoding a nucleoid-associated pro-
tein induced under anaerobic growth conditions, which
we found is FNR-dependent [57]. Furthermore, we ob-
served that menDBCE, genes required for the biosyn-
thesis of quinones with essential roles in anaerobic
electron transport systems, are affected by the pres-
ence of FNR in contrast to E. coli (Table 1, Figure 1A
and B) [58-60].
Our study revealed extended regulatory roles for FNR,

such as in the biosynthesis of L-cysteine. Previous work
has demonstrated that cysK, which encodes an enzyme
in L-cysteine biosynthesis, is subject to FNR regulation
and identified an FNR-like domain in cysJ, which en-
codes a component of the sulfite reductase [16,61]. Here,
we found that loss of FNR affects the entire L-cysteine
biosynthetic pathway including genes involved in the up-
take and transport of sulfate (i.e. cysPUWAM), sulfate
activation (cysDN), reduction to sulfide (cysJIH) and
transformation into L-cysteine (cysK) (Table 1, Figure 1A,
see Additional file 1: Table S2) [62-64].

Reprogramming of T3SS related genes under anaerobic
conditions
Analysis of genes involved in Shigella virulence re-
vealed that multiple genes on the Shigella virulence
plasmid, including ipa-mxi-spa genes, were repressed
under anaerobic growth in an FNR-dependent manner
(Table 2). In contrast, only seven genes on the plasmid
(yigB, ospI, shf, rfbU, virK, msbB and parA) were up-
regulated in the absence of oxygen; all of these are
regulated by FNR except parA and yigB (Table 2).
Figure 3 shows effect of oxygen on expression of genes
on the virulence plasmid genes. These findings were
confirmed by strand specific qRT-PCR for several
genes (Figures 4 and 5). Since excess ParA levels com-
pared with ParB can affect plasmid partitioning, we
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Table 1 Chromosomal genes differentially expressed in response to anaerobic conditions not previously published in
E. coli and S. flexneri microarray analysis

ORF IDab Gene Description
RNA-seqc

log2FC
RNA-seqc

log2FC
FRT-seqc

log2FC

WT no O2/O2 Δfnr/WT no O2 Δfnr/WT no O2

Metabolism

Energy production and conversion

SF5M90T_1519 putative oxidoreductase, major subunit 3.80 −4.97 −3.30

SF5M90T_3856 yiaY putative oxidoreductase 3.18 −2.73 −2.67

SF5M90T_1560 putative oxidoreductase, major subunit 3.06 −3.87

SF5M90T_3333 pckA phosphoenolpyruvate carboxykinase 1.99 0.62

SF5M90T_3877 yiaK putative dehydrogenase 1.93 1.22 0.93

SF5M90T_3374 ugpQ glycerophosphodiester phosphodiesterase, cytosolic 1.89

SF5M90T_2534 hmpA dihydropteridine reductase, ferrisiderophore reductase activity 1.47 5.38 5.85

SF5M90T_33 caiB l-carnitine dehydratase 1.32

SF5M90T_3679 atpF membrane-bound ATP synthase, F0 sector, subunit b 1.04

SF5M90T_3680 atpE membrane-bound ATP synthase, F0 sector, subunit c 1.04

SF5M90T_3937 ppc phosphoenolpyruvate carboxylase 0.91 0.64

SF5M90T_579 galT galactose-1-phosphate uridylyltransferase 0.77

SF5M90T_1419 ydjA predicted oxidoreductase −1.17 1.69 1.52

SF5M90T_2771 ygaF hydroxyglutarate oxidase −1.31 4.12 2.99

SF5M90T_4044 gltP glutamate-aspartate symport protein −1.32

SF5M90T_1603 rnfB electron transport complex protein −1.46

SF5M90T_2869 fldB flavodoxin 2 −1.56

SF5M90T_1602 rnfA Na + −translocating NADH-quinone reductase subunit E −1.75

SF5M90T_1011 rutA pyrimidine monooxygenase −3.07

Carbohydrate transport and metabolism

SF4250 treB PTS system trehalose(maltose)-specific transporter subunits IIBC 3.66

SF5M90T_4160 treC trehalase 6-P hydrolase 3.56

SF5M90T_1379 manX PTS enzyme IIAB, mannose-specific 3.36

SF5M90T_1378 manY PTS enzyme IIC, mannose-specific 3.11

SF5M90T_1377 manZ PTS enzyme IID, mannose-specific 2.89

SF5M90T_3670 rbsD high affinity ribose transport protein 2.71

SF5M90T_1101 ptsG PTS system, glucose-specific IIBC component 2.27

SF5M90T_3491 treF cytoplasmic trehalase 2.12

SF5M90T_2419 murP PTS system N-acetylmuramic acid transporter subunits EIIBC 2.09 −0.71

SF5M90T_3499 pfkA 6-phosphofructokinase I 2.08

SF5M90T_2096 fructose-bisphosphate aldolase 2.02 2.08 1.86

SF5M90T_1001 agp periplasmic glucose-1-phosphatase 2.00 1.40 1.57

SF5M90T_2887 rpiA ribosephosphate isomerase, constitutive 1.84

SF5M90T_2898 pgk phosphoglycerate kinase 1.84

SF5M90T_1403 gapA glyceraldehyde-3-phosphate dehydrogenase A 1.83

SF5M90T_2097 yegT putative nucleoside permease protein 1.74

SF5M90T_2897 fba fructose-bisphosphate aldolase, class II 1.56

SF5M90T_2404 ptsH PTS system protein HPr 1.56

SF5M90T_3850 mtlA PTS system, mannitol-specific enzyme IIABC components 1.52

SF5M90T_1640 ydhC putative transport protein 1.51 0.69
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Table 1 Chromosomal genes differentially expressed in response to anaerobic conditions not previously published in
E. coli and S. flexneri microarray analysis (Continued)

SF5M90T_2359 beta-fructosidase 1.49 0.72

SF5M90T_3496 tpiA triosephosphate isomerase 1.45

SF5M90T_2405 ptsI PEP-protein phosphotransferase system enzyme I 1.42

SF5M90T_2808 fucI L-fucose isomerase 1.41

SF5M90T_2875 bglA 6-phospho-beta-glucosidase A 1.27

SF5M90T_3348 malP maltodextrin phosphorylase 1.16 0.78

SF5M90T_1107 ycfO beta-hexosaminidase 1.13

SF5M90T_8 talB transaldolase B 1.10

SF5M90T_2033 gnd gluconate-6-phosphate dehydrogenase 1.01

SF5M90T_581 galM galactose-1-epimerase 1.01 1.41 1.00

SF5M90T_1805 eda keto-hydroxyglutarate-aldolase/keto-deoxy-phosphogluconate
aldolase

0.97

SF5M90T_580 galK galactokinase 0.95 0.62

SF5M90T_2913 tktA transketolase 1 isozyme 0.80

SF5M90T_2187 fruB PTS system fructose-specific transporter subunit IIA/HPr protein −1.33

SF5M90T_2186 fruK fructose-1-phosphate kinase −1.75

SF5M90T_3161 ptsO phosphocarrier protein NPr −1.76

SF5M90T_1637 putative transport protein −1.93 1.58

SF5M90T_2185 fruA PTS system, fructose-specific transport protein −1.99

Aminoacid transport and metabolism

SF5M90T_2823 argA N-acetylglutamate synthase 1.94

SF5M90T_1910 fliY putative periplasmic binding transport protein 1.80

SF5M90T_625 ybgH peptide transporter 1.64 −1.60 −1.21

SF5M90T_292 pepD aminoacyl-histidine dipeptidase (peptidase D) 1.54 1.78 1.75

SF5M90T_2879 gcvT aminomethyltransferase 1.53 1.44

SF5M90T_284 proA gamma-glutamylphosphate reductase 1.48

SF5M90T_1121 potD spermidine/putrescine periplasmic transport protein 1.44 −0.69

SF5M90T_2674 cysD ATP:sulfurylase (ATP:sulfate adenylyltransferase), subunit 2 1.39 −2.30 −2.21

SF5M90T_1514 dcp dipeptidyl carboxypeptidase II 1.35 0.63

SF5M90T_285 proB gamma-glutamate kinase 1.26 −0.58

SF5M90T_2533 glyA serine hydroxymethyltransferase 1.16

SF5M90T_2967 gsp glutathionylspermidine synthetase/amidase 1.16 0.70

SF5M90T_1806 edd 6-phosphogluconate dehydratase 1.15 −0.72

SF5M90T_807 glutathione transporter ATP-binding protein 1.08

SF5M90T_2317 hisJ histidine-binding periplasmic protein of high-affinity
histidine transport system

1.05

SF5M90T_806 ybiK putative asparaginase 1.02

SF5M90T_1122 potC spermidine/putrescine transport system permease 0.97 −1.09 −0.92

SF5M90T_2882 pepP proline aminopeptidase P II 0.94

SF5M90T_2877 gcvP glycine decarboxylase 0.90 2.13 1.69

SF5M90T_3687 asnA asparagine synthetase A −1.23 −1.61

SF5M90T_4099 lysC aspartokinase III, lysine sensitive −1.33 1.37 1.14

SF5M90T_1253 trpE anthranilate synthase component I −1.57

SF5M90T_4187 cycA transport of D-alanine, D-serine, and glycine −1.69

SF5M90T_1946 yedA putative transmembrane subunit −1.79
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Table 1 Chromosomal genes differentially expressed in response to anaerobic conditions not previously published in
E. coli and S. flexneri microarray analysis (Continued)

SF5M90T_3626 yifK putative amino acid/amine transport protein −1.94

SF5M90T_3385 livJ Leu/Ile/Val-binding protein precursor −1.95

SF5M90T_2843 lysA diaminopimelate decarboxylase −2.11 2.44

SF5M90T_4029 proP low-affinity transport system; proline permease II −2.65 1.05 0.75

SF5M90T_4185 ytfF putative transmembrane subunit −3.70 2.71

Nucleotide transport and metabolism

SF5M90T_3587 udp uridine phosphorylase 3.12 0.59

SF5M90T_2387 nupC permease of transport system for 3 nucleosides 2.81

SF5M90T_2949 nupG nucleoside permease 2.47

SF5M90T_674 ybeK putative tRNA synthetase 1.60

SF5M90T_444 adk adenylate kinase 1.51 −0.67

SF5M90T_2456 purC phosphoribosylaminoimidazole-succinocarboxamidesynthetase 1.35

SF5M90T_4182 cpdB 2′:3′-cyclic-nucleotide 2′-phosphodiesterase 1.16

SF5M90T_291 gpt guanine-hypoxanthine phosphoribosyltransferase 1.10 −0.89

SF5M90T_1598 add adenosine deaminase 0.95

SF5M90T_478 purE phosphoribosylaminoimidazole carboxylase −1.41

Coenzyme transport and metabolism

SF5M90T_2274 menB dihydroxynaphtoic acid synthetase 2.63 −1.75 −1.65

SF5M90T_2687 phenylacrylic acid decarboxylase-like protein 1.83

SF5M90T_2276 menD 2-oxoglutarate decarboxylase 1.76 −1.63 −1.75

SF5M90T_2273 menC O-succinylbenzoate synthase 1.76 −1.72 −1.57

SF5M90T_3142 ispB octaprenyl diphosphate synthase 1.06

SF5M90T_1613 pdxH pyridoxinephosphate oxidase 1.06

SF5M90T_2880 visC putative FAD-dependent oxidoreductase 0.89

SF5M90T_3011 ribB 3,4 dihydroxy-2-butanone-4-phosphate synthase −1.10

SF5M90T_3577 yigC putative oxidoreductase −1.31

SF5M90T_2885 ygfA putative ligase −1.59

SF5M90T_3957 birA biotin–protein ligase −1.62 −0.51

SF5M90T_2103 thiM hydoxyethylthiazole kinase −1.95

Lipid transport and metabolism

SF5M90T_1094 acpP acyl carrier protein 1.70 −3.04

SF5M90T_2272 menE o-succinylbenzoate-CoA ligase 1.60 −1.54 −1.80

SF5M90T_2416 ucpA putative oxidoreductase 1.45 −0.56

SF5M90T_339 sbmA sensitivity to microcin B17, possibly envelope protein −1.64

Inorganic ion transport and metabolism

SF5M90T_2903 hypothetical lipoprotein 3.41

SF5M90T_929 ycbO alkanesulfonate transporter substrate-binding subunit 3.04

SF5M90T_2415 cysP thiosulfate binding protein 2.81 −1.51 −1.88

SF5M90T_1636 sodB superoxide dismutase 2.52 2.13 1.67

SF5M90T_1187 putative ATP-binding protein of ABC transporter 2.14

SF5M90T_454 copA copper exporting ATPase 1.95

SF5M90T_1186 putative iron compound ABC transporter permease 1.69

SF5M90T_1185 iron ABC transporter ATP-binding protein 1.52
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Table 1 Chromosomal genes differentially expressed in response to anaerobic conditions not previously published in
E. coli and S. flexneri microarray analysis (Continued)

SF5M90T_4057 yjcE predicted cation/proton antiporter 1.49

SF5M90T_2675 cysN ATP-sulfurylase (ATP:sulfate adenylyltransferase), subunit 1 1.08 −2.08 −2.05

SF5M90T_448 ybaL putative transport protein −1.01 −0.50

SF5M90T_2386 mntH divalent metal cation transporter −1.93 1.61 1.68

SF5M90T_330 tauC taurine transport system permease protein −2.09

SF5M90T_3769 shiF putative membrane transport protein −2.16

SF5M90T_3054 ygjT putative transport protein −2.41

SF5M90T_1102 fhuE outer membrane receptor for ferric iron uptake −2.46

SF5M90T_1483 ydiE hemin uptake protein −2.93 −2.20 −1.55

SF5M90T_1572 mdtI spermidine export protein −3.61

Secondary metabolites biosynthesis, transport and catabolism

SF5M90T_1184 putative SAM-dependent methyltransferase 2.12

SF5M90T_331 tauD taurine dioxygenase, 2-oxoglutarate-dependent −2.97 1.94

Cellular processes and signalling

Cell cycle control, cell division, chromosome partitioning

SF5M90T_1243 yciB probable intracellular septation protein A 0.93 −0.80

Defense mechanisms

SF5M90T_4215 ampC beta-lactamase; penicillin resistance 1.55 −1.69

SF5M90T_3751 emrD multidrug resistance protein D 1.41

SF5M90T_4273 putative restriction modification enzyme R subunit 1.41 −0.94 −0.99

SF5M90T_3781 shiA virulence factor 1.30

SF5M90T_101 ampD N-acetyl-anhydromuranmyl-L-alanine amidase 1.18

SF5M90T_772 ybhF putative ABC-type multidrug transport system component 1.16 0.54

SF5M90T_771 ybhS putative ABC-type multidrug transport system component 1.15

SF5M90T_770 ybhR putative ABC-type multidrug transport system component 0.90

SF5M90T_418 mdlA ATP-binding component of a transport system −1.29

Signal transduction mechanisms

SF5M90T_2126 yehU putative 2-component sensor protein 1.36

SF5M90T_3428 uspA universal stress protein 0.86

SF5M90T_2388 yfeA predicted diguanylate cyclase −1.20 −0.81

SF5M90T_4339 creC sensory histidine kinase −1.63 1.43

Cell wall/membrane/envelope biogenesis

SF5M90T_1923 nmpC outer membrane porin protein 2.04 −1.34 −1.13

SF5M90T_1618 slyB putative outer membrane protein 1.82 −1.43 −0.92

SF5M90T_952 ompA outer membrane protein 3a 1.59

SF5M90T_374 tsx outer membrane protein 1.53

SF5M90T_256 gtrB bactoprenol glucosyl transferase 1.36 −2.59

SF5M90T_2039 rfbC dTDP-4-dehydrorhamnose 3,5-epimerase 1.20 −2.64

SF5M90T_4332 slt soluble lytic murein transglycosylase 0.96 1.54 1.46

SF5M90T_3951 murI glutamate racemase 0.93 −0.48

SF5M90T_3821 rfaD ADP-L-glycero-D-mannoheptose-6-epimerase 0.82

SF5M90T_1241 tonB transport protein −1.72

SF5M90T_3956 murB UDP-N-acetylenolpyruvoylglucosamine reductase −2.23 −0.60
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Table 1 Chromosomal genes differentially expressed in response to anaerobic conditions not previously published in
E. coli and S. flexneri microarray analysis (Continued)

Cell motility

SF5M90T_1938 fliQ flagellar biosynthetic protein 3.55

Intracellular trafficking, secretion and vesicular transport

SF5M90T_3964 secE preprotein translocase 0.87 −1.06 −0.76

SF5M90T_3580 tatC Sec-independent protein translocase 0.84 −0.57

SF5M90T_3501 yiiO uncharacterized periplasmic protein −4.72 2.64

Posttranslational modification, protein turnover, chaperones

SF5M90T_4204 mopB co-chaperonin GroES 1.41

SF5M90T_3279 slyD FKBP-type peptidyl-prolyl cis-trans isomerase 1.31

SF5M90T_462 ybbN putative thioredoxin-like protein 0.90

SF5M90T_407 clpP ATP-dependent proteolytic subunit of clpA-clpP serine protease 0.84

SF5M90T_3738 ibpA heat shock protein −1.17

SF5M90T_2074 yegD putative heat shock protein −2.80 −1.11

Information storage and processing

Translation, ribosomal structure and biogenesis

SF5M90T_2801 yfiA translation inhibitor protein RaiA 2.70

SF5M90T_2392 gltX glutamate tRNA synthetase, catalytic subunit 1.65

SF5M90T_155 frr ribosome releasing factor 1.21

SF5M90T_650 glnS glutamine tRNA synthetase 1.08

SF5M90T_3893 glyQ glycine tRNA synthetase, alpha subunit 1.06 −0.50

SF5M90T_4220 yjeA putative lysyl-tRNA synthetase 0.95 −1.75 −1.72

SF5M90T_3894 glyS glycine tRNA synthetase, beta subunit 0.81

Transcription

SF5M90T_3025 ygiP putative transcriptional regulator/nucleoid-associated protein 3.04 −4.57 −2.45

SF5M90T_2417 murR HTH-type transcriptional regulator 2.35

SF5M90T_3510 rhaR positive regulator for rhaRS operon 2.33

SF5M90T_1595 malI repressor of malX and Y genes 1.98

SF5M90T_2125 yehT putative two-component response regulator 1.80

SF5M90T_1373 cspC cold shock protein 1.59 −1.38

SF5M90T_3349 malT positive regulator of mal regulon 1.58 0.58

SF5M90T_3335 ompR osmolarity response regulator 1.42

SF5M90T_3453 yiaG putative transcriptional regulator 1.38 3.65

SF5M90T_2089 gatR galactitol utilization operon repressor 1.33

SF5M90T_71 cra transcriptional repressor of fru operon and others 1.16

SF5M90T_4197 yjdC putative transcriptional regulator 1.15 1.37

SF5M90T_1370 putative regulator 1.09

SF5M90T_3578 rfaH transcriptional activator −1.57 −0.96

SF5M90T_4242 yjeB HTH-type transcriptional repressor −1.95

SF5M90T_984 cspH cold shock-like protein −3.35

Replication, recombination and repair

SF5M90T_2925 endA DNA-specific endonuclease I 1.42 −3.26 −2.74

SF5M90T_3034 ygjF G/U mismatch-specific DNA glycosylase 1.23 1.10

SF5M90T_410 hupB DNA-binding protein HU-beta 1.08

SF5M90T_775 rhlE putative ATP-dependent RNA helicase −1.16
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Table 1 Chromosomal genes differentially expressed in response to anaerobic conditions not previously published in
E. coli and S. flexneri microarray analysis (Continued)

SF5M90T_3117 deaD inducible ATP-independent RNA helicase −1.20

SF5M90T_1769 dbpA ATP-dependent RNA helicase −1.86

Poorly characterized

General function prediction only

SF5M90T_2762 stpA DNA-binding protein 3.51 −3.00 −2.60

SF5M90T_275 putative crossover junction endodeoxyribonuclease 2.84

SF5M90T_2418 muQ N-acetylmuramic acid 6-phosphate etherase 2.77 −0.93

SF5M90T_1724 putative acetyltransferase 2.06 −2.41

SF5M90T_2435 putative amino acid antiporter 2.03 1.90 1.58

SF5M90T_2301 yfbT putative phosphatase 2.00

SF5M90T_773 ybhG putative membrane protein 1.78 1.02

SF5M90T_1227 hns DNA-binding protein 1.69 −1.24

SF5M90T_2275 yfbB putative enzyme 1.62 −1.90 −1.85

SF5M90T_3225 yrdA putative transferase 1.51

SF5M90T_4236 hfq RNA-binding protein 1.45 −2.10

SF5M90T_3315 gph phosphoglycolate phosphatase 1.25

SF5M90T_2192 yeiR putative GTPases 1.03

SF5M90T_1919 yedE putative transport system permease protein 1.03 −1.83 −1.96

SF5M90T_3295 yhfC putative transport 0.97 −1.30 −1.25

SF5M90T_2205 yejK nucleoid-associated protein 0.95

SF5M90T_2066 yegH putative transport protein 0.84

SF5M90T_3344 yhgH putative gluconate periplasmic binding protein 0.81

SF5M90T_3102 yraM putative glycosylase 0.73

SF5M90T_794 ybiP putative enzyme −1.14

SF5M90T_2207 yejM putative sulfatase −1.36

SF5M90T_3139 yhbE putative permeases of drug/metabolite
transporter superfamily

−1.36 −0.90

SF5M90T_966 yccA putative carrier/transport protein −1.38 −1.18

SF5M90T_2742 yqaB putative phosphatase −1.51

SF5M90T_3882 bax putative ATP-binding protein −1.70 −0.77

SF5M90T_3370 yhhX putative regulator −1.97 1.30

SF5M90T_3621 aslB putative arylsulfatase regulator −2.73

SF5M90T_2516 putative enzyme −3.91

Function unknown

SFxv_3833 conserved hypothetical protein 3.59 −4.23

SF5M90T_2431 conserved hypothetical protein 2.89

SF5M90T_2432 conserved hypothetical protein 2.69

SF5M90T_11 uncharacterized protein 2.57

SF5M90T_1402 yeaD conserved hypothetical protein 2.45

SF5M90T_828 ybjO conserved hypothetical protein 2.23 −2.52

SF5M90T_1941 dsrB conserved hypothetical protein 2.03 −2.43

SF5M90T_2302 yfbU conserved hypothetical protein 1.87

SF5M90T_451 ybaK conserved hypothetical protein 1.86 −1.21 −1.10

SSJG_00311 conserved hypothetical protein 1.75 −1.60
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also examined the transcription profile of parB [65].
Similar to parA, mRNA levels of parB are elevated
during anaerobic growth (Figure 5). Consistent with
this finding, there was no significant difference in loss
of the virulence plasmid from bacteria grown in aer-
obic and anaerobic conditions (not shown).
The Shigella pathogenicity island SHI-1 is not

present in S. flexneri M90T. Therefore, we examined
the transcriptional profile of the SHI-2 pathogenicity
island that includes the aerobactin, iron-uptake system
[66]. As previously reported, we found that genes en-
coding the aerobactin system (iucABCD and iutA) were
down-regulated under anaerobic conditions, as was
shiF, a gene which is also involved in iron acquisition
[6,67]. In contrast, shiA, a SHI-2 gene involved in

attenuating host inflammatory responses, was over-
expressed under anaerobic conditions when compared to
aerobic conditions [68]. Of note, no SHI-2 gene is subject
to FNR regulation (Table 1, Figure 5, see Additional file 1:
Table S1).

csrB and csrC sRNAs are induced in the absence of
oxygen in S. flexneri M90T
Little is known about the small RNAs (sRNAs) in Shigella
or their expression under anaerobic conditions. We ana-
lysed the sRNAs already described in Shigella as well as po-
tential sRNAs homologues to those described in S. enterica
serovar Typhimurium and found that anaerobic growth
conditions induce the expression of csrB and csrC in an
FNR-independent manner (Table 3, Figure 6) [69-71].

Table 1 Chromosomal genes differentially expressed in response to anaerobic conditions not previously published in
E. coli and S. flexneri microarray analysis (Continued)

SF5M90T_5 yaaA conserved hypothetical protein 1.54

SF5M90T_1387 conserved hypothetical protein 1.51

SF5M90T_3911 yiiU conserved hypothetical protein 1.45 −2.49

SF5M90T_957 conserved hypothetical protein 1.37

SF5M90T_4146 yjgD conserved hypothetical protein 1.28 −2.30

SF5M90T_2622 conserved hypothetical protein 1.24 −1.46

SF5M90T_3155 yhbN conserved hypothetical protein 0.81

SF5M90T_479 ybbF conserved hypothetical protein −1.19

SF5M90T_2195 rtn conserved hypothetical protein −1.50

SF5M90T_438 ybaN conserved hypothetical protein −1.73

SF5M90T_1853 conserved hypothetical protein −2.03 −2.58

SF5M90T_1647 conserved hypothetical protein −2.11

SF5M90T_983 ymcD conserved hypothetical protein −2.34

SF5M90T_4094 yjbA P-starvation inducible protein PsiE −2.51 1.69

SF5M90T_1110 ycfJ conserved hypothetical protein −2.52 0.99

SF2861 hypothetical protein remnant −2.64

SF5M90T_2146 yohO membrane protein −2.96

SF5M90T_1952 putative outer membrane pore protein −2.98

SF5M90T_4307 putative inner membrane protein −3.40

SF1231 conserved hypothetical protein −3.71 −1.60

SF5M90T_427 ybaA conserved hypothetical protein −3.88

Phage related

S1668 relF prophage maintenance protein 1.75

SF5M90T_1793 putative phage integrase protein 1.45 −1.60

SF5M90T_1056 hypothetical bacteriophage protein 1.14

SF5M90T_740 putative bacteriophage protein −1.93
aGenomes used as reference are: S. flexneri 5a str. M90T, S. flexneri 2a str. 301, S. flexneri 2002017, Shigella sp. D9 and S. flexneri 2457 T with GenBank accession
numbers AGNM00000000, NC_004337, NC_017328, NZ_GG657384 and NC_004741 respectively.
bGenes are classified in functional categories based on the database of Clusters of Orthologous Groups (COGs). http://www.ncbi.nlm.nih.gov/COG/. Inside each
subgroup, genes are arranged in descending order in relation to Log2 of Fold Change values of WT no O2/WT O2 comparison.
cLog2 of Fold Change values of WT no O2/WT O2 and Δfnr no O2/WT no O2 comparisons are presented. Only values considered differentially expressed are shown
(p adjust <0.05).
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Discussion
In vitro studies have several limitations in relation to
in vivo studies; e.g., they cannot mimic the amount and

type of carbon sources available for bacteria and lack the
signals derived from the interaction with intestinal epi-
thelium, human immune system or other bacteria

Figure 1 qRT-PCR verification of S. flexneri chromosomal genes induced under anaerobic growth conditions and the role of FNR in the
process. Strand specific qRT-PCR analysis of mRNA levels of S. flexneri M90T chromosomal genes shown to be induced under anaerobiosis in
RNA-seq analysis. Panel A shows transport and metabolic genes, and panel B acid resistance, OMP and regulatory genes. Data were calculated as
the n-fold difference relative to polA (2-ΔCt, where ΔCt represents the difference in threshold cycle between the target and control genes). Results
are shown in relation to the wild-type strain 2-ΔCt levels under aerobic conditions, here referred to as 1. Thus, values greater than 1 indicate
increased transcription under anaerobiosis, and lower than 1 indicate the opposite. Significant differences were detected when wild-type 2-ΔCt

levels under aerobic and anaerobic conditions, or wild-type vs. Δfnr 2-ΔCt levels under anaerobiosis were compared. ns = non-significant, P < 0.05,
*; P <0.01, **; n = 4; Mann–Whitney test. Error bars show Standard Deviation (SD).
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present in the gut. However, if conducted accurately can
provide valuable information.
In the current study we have, for the first time,

employed RNA-sequencing to identify oxygen regulated
genes in an enteric pathogen. Our findings confirm
previous results, but as this method is more sensitive
than array based approaches, we identified an extended
repertoire of genes modulated by oxygen in an FNR-
dependent or -independent manner. For instance, little

is known about the role of Cra, a transcriptional regula-
tor of carbon flux (that represses glycolysis and activates
gluconeogenesis) here shown to be induced under anaer-
obic conditions [41]. Interestingly, mutation of cra in-
creases both epithelial cell attachment and invasion by
Shigella in aerobic conditions [72]. However, Cra has an
entirely distinct role in the virulence of enterohemorrha-
gic E. coli (EHEC), a close relative of Shigella, when in-
vestigated under conditions mimicking the anaerobic
environment of the intestinal tract. Under these circum-
stances, loss of Cra reduces attachment of bacteria to
enterocytes [73]. Additionally, Salmonella cra mutants
are avirulent when administered orally, indicating that
Cra may have key roles in enteric pathogens in anaer-
obic conditions [74].
While there is an increasing recognition that carbon

metabolism affects microbial virulence, it is still not
clear whether distinct carbon energy sources are import-
ant or preferable for different members of the Entero-
bacteriaceae [72,75-80]. For example, our results show
that the expression pattern under anaerobic conditions
of ptsG, manXYC and fruBKA involved in the transport
of sugars is opposite in Shigella to that observed in E.
coli [18,20]. This could be simply due to the different
growth medium used in the experiments or to distinct
metabolic strategies between Shigella and other Entero-
bacteriaceae. In favour of the latter and its relationship
with virulence it has been shown that mutation of ptsG
induces the adherence and invasive capacity of enteroin-
vasive E. coli (EIEC) strains but not in Salmonella [81].
Further differences between Shigella and other Entero-
bacteriaceae include adiY, an AraC-like regulator, which
activates expression of adiA and adiC, encoding the
arginine-dependent acid resistance system (AR3). In
Salmonella adiY expression is elevated under aerobic
conditions, whereas in Shigella and in E. coli, increased
expression of adiY occurs in anaerobiosis [20,82]. These
differences could be due to the strikingly different acid
survival strategies that these bacteria seem to develop in
spite of being close relatives [83]. Deletion of cad locus,
a typical pathoadaptive mutation in Shigella spp., also
induces the AR3 system suggesting that this system con-
tributes to the survival of Shigella in its particular niche
in the intestinal tract [84,85].
Interestingly, we observed an FNR-dependent elevated

expression under anaerobiosis of hns and overall of stpA
and ygiP that encode nucleoid-associated proteins re-
sponsible for DNA compaction and global gene regula-
tion, indicating that lack of oxygen profoundly modifies
DNA topology in Shigella. Recently, it has been shown
that FNR function is strongly inhibited by this kind of
nucleoid-associated proteins, which block FNR access to
many binding sites [20]. Our findings suggest that FNR
is involved in this inhibition, probably indirectly, due to

Figure 2 qRT-PCR verification of S. flexneri chromosomal genes
repressed under anaerobic growth conditions and the role of
FNR in the repression. Strand specific qRT-PCR analysis of mRNA
levels of S. flexneri M90T chromosomal genes shown to be repressed
in RNA-seq analysis. Data were calculated as the n-fold difference
relative to polA (2-ΔCt, where ΔCt represents the difference in threshold
cycle between the target and control genes). Results are shown in
relation to wild-type 2-ΔCt levels under aerobic conditions, here referred
to as 1. Thus, values greater than 1 indicate increased transcription
under anaerobiosis and lower than 1 indicates the opposite. Significant
differences were detected when wild-type 2-ΔCt levels under aerobic
and anaerobic conditions or wild-type vs. Δfnr 2-ΔCt levels under
anaerobiosis were compared. P <0.01, **; n = 4; Mann–Whitney test.
Error bars show Standard Deviation (SD).
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Table 2 Virulence plasmid genes differentially expressed in response to anaerobic conditions

ORF IDab Gene Description RNA-seqc log2FC RNA-seqc log2FC FRT-seqc log2FC

WT no O2/O2 Δfnr/WT no O2 Δfnr/WT no O2

pWR501_0265 yigB hypothetical protein 2.56

pWR501_0225 ospI T3SS effector 2.00 −2.21

pWR501_0250 shf peptidoglycan deacetylase 1.24 −3.42 −1.30

pWR501_0251 rfbU glycosiltransferase 1.21 −1.65 −1.16

pWR501_0252 virK virulence protein 1.15 −2.16 −1.03

pWR501_0039 parA plasmid segregation protein 1.13

pWR501_0253 msbB acyltransferase 1.07 −3.03 −1.08

pWR501_0074 sepA secreted protease −1.12 1.34 1.52

pWR501_0177 hypothetical protein −1.55 1.04

pWR501_0283 ipaH1.4 T3SS effector −1.56

pWR501_0175 hypothetical protein −1.58 2.29

pWR501_0176 hypothetical protein −1.76 2.02

pWR501_0015 hypothetical protein −2.00 1.52 1.05

pWR501_0002 putative resolvase −2.04 1.97

pWR501_0007 hypothetical protein −2.25 1.63

pWR501_0014 hypothetical protein −2.25 1.60 1.27

pWR501_0192 virG invasion protein −2.25 2.36

pWR501_0144 ipgF unknown function −2.38 3.20

pWR501_0051 virF transcriptional activator of virulence −2.47

pWR501_0006 hypothetical protein −2.54

pWR501_0143 ipgE chaperon −2.55 3.39

pWR501_0146 mxiH T3SS component −2.56 1.55 4.10

pWR501_0122 hypothetical protein −2.58 1.53 1.95

pWR501_0121 hypothetical protein −2.65

pWR501_0191 virA T3SS effector −2.66 2.42

pWR501_0147 mxiI T3SS component −2.80 2.00 4.01

pWR501_0013 mkaD mouse killing factor −2.81 1.97 3.33

pWR501_0145 mxiG T3SS component −3.02 3.45

pWR501_0148 mxiJ T3SS component −3.06 2.17 4.33

pWR501_0031 hypothetical protein −3.14

pWR501_0005 hypothetical protein −3.14 2.49

pWR501_0292 sopA VirG-specific protease −3.25 2.49

pWR501_0291 hypothetical protein −3.31

pWR501_0138 ipgB invasion protein −3.34 3.66

pWR501_0157 spa15 chaperon −3.34 3.52 4.43

pWR501_0012 shET2-2 enterotoxin −3.38 3.41

pWR501_0156 mxiA T3SS component −3.44 4.67

pWR501_0160 spa32 invasion protein −3.45 1.34 4.63

pWR501_0141 hypothetical protein −3.50 3.71

pWR501_0004 phoN2 apyrase −3.52 2.38 3.25

pWR501_0150 mxiL hypothetical protein −3.59 2.07 4.64

pWR501_0132 acp hypothetical protein −3.62 5.19

pWR501_0166 spa-orf10 hypothetical protein −3.64 1.97 4.52
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the absence of putative FNR binding-boxes in the pro-
moter region of these genes [20].
To distinguish between direct and indirect effects of

FNR, in vivo approaches based in chromatin immuno-
precipitation followed by micro-array hybridization
(ChIP-chip) or high-throughput sequencing (ChIP-seq)
have been performed in E. coli [20,86]. Correlation of
FNR ChIP-seq peaks with transcriptomic data showed
that less than half of the FNR-regulated operons could
be attributed to direct FNR binding. Of note, FNR occu-
pancy does not always correlate with the presence of a
consensus FNR binding site or a change in expression
[20,86]. A total of 19 of E. coli ChIP-seq peaks are lo-
cated in promoter regions of genes identified in Table 1
(i.e. ptsG, pfkA, gapA, yegT, ptsH, tpiA, lysC, menD, ribB,
uspA, slyB, ompA, tonB, yjeA, cspH, deaD, dbpA, yccA
and yhhX); only one of these, dbpA, has a canonical
FNR binding sequence in its promoter region. Consist-
ent with previous findings, only six of these 19 genes
(lysC, menD, slyB, yjeA, yccA and yhhX) were influenced
by FNR in our transcriptomic analysis. This result

suggests that many FNR effects in Table 1 are likely to
be indirect. However, we cannot rule out differences in
regulation between E. coli and Shigella that could affect
FNR function. Of note, this is the first time that menD,
slyB, yjeA and yhhX have been identified as FNR regu-
lated by transcriptome analysis, corroborating previous
ChIP findings performed in E. coli.
sRNAs are widespread in bacteria and play critical

roles in regulating physiological processes [87]. In
Shigella, putative sRNAs have been identified by bio-
informatics [69,70]. However, the expression of these
sRNAs has not been confirmed in all cases and little is
known about their function or the physiological condi-
tions that induce their expression. Here, we found that
anaerobic growth induces expression of two sRNAs, csrB
and csrC, independently of FNR. In E. coli csrB and csrC
regulate the activity of CsrA, the carbon storage regulator
although their function in Shigella has not been charac-
terised so far [88,89].
For genes directly involved in host:pathogen interac-

tions, we found that oxygen influences the expression of

Table 2 Virulence plasmid genes differentially expressed in response to anaerobic conditions (Continued)

pWR501_0158 spa47 T3SS component −3.65 3.19 4.69

pWR501_0140 icsB T3SS effector −3.65 2.16 4.43

pWR501_0162 spa24 T3SS component −3.70 2.28 3.71

pWR501_0159 spa13 T3SS component −3.75 5.13

pWR501_0161 spa33 T3SS component −3.75 1.99 4.03

pWR501_0151 mxiM T3SS component −3.81 2.40 4.25

pWR501_0155 mxiC T3SS component −3.86 2.43 4.95

pWR501_0290 hypothetical protein −3.86 2.00

pWR501_0030 putative enterotoxin fragment −3.90 2.20 4.54

pWR501_0163 spa9 T3SS component −3.92 1.93 3.56

pWR501_0137 ipgC chaperon −3.93 1.86 4.04

pWR501_0135 ipaC T3SS effector −3.93 2.65 5.01

pWR501_0165 spa40 T3SS component −3.94 4.02

pWR501_0139 ipgA chaperon −3.95 2.45 4.25

pWR501_0153 mxiD T3SS component −3.98 2.33 4.81

pWR501_0152 mxiE transcriptional activator −4.06 2.51 4.48

pWR501_0154 mxiD T3SS component −4.08 2.66 4.54

pWR501_0134 ipaD T3SS effector −4.16 2.99 4.92

pWR501_0167 spa-orf11 hypothetical protein −4.19 2.85 4.07

pWR501_0136 ipaB T3SS effector −4.24 2.97 4.59

pWR501_0133 ipaA T3SS effector −4.24 3.09 4.98

pWR501_0003 hypothetical protein −4.57 3.29

pWR501_0164 spa29 T3SS component −5.06 2.36 3.32

pWR501_0131 virB transcriptional activator −5.17 2.40 4.26
aS. flexneri 5a str. M90T pWR501 virulence plasmid sequence was used as reference GenBank accession numbers AF348706.
bGenes are arranged in descending order in relation to Log2 of Fold Change values of WT no O2/WT O2 comparison.
cLog2 of Fold Change values of WT no O2/WT O2 and Δfnr no O2/WT no O2 comparisons are presented. Only values considered differentially expressed are shown
(p adjust <0.05).
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almost all genes in the mxi-spa operon. These T3SS-
related genes were down-regulated in the absence of
oxygen in an FNR-dependent manner. This is likely to
be mediated by VirB as this transcription factor controls
many genes in this operon, is influenced by H-NS
dependent DNA supercoiling and our findings demon-
strate that virB gene is repressed in anaerobiosis [90].
The effect of oxygen on the Shigella T3SS is opposite to
Salmonella in which FNR induces expression of invasion
genes, and probably reflects the different sites occupied

in the host by these two related intestinal pathogens
[19]. The results further emphasise that the Shigella
T3SS is inactive in anaerobic environments as we previ-
ously reported [7].
Inflammation at the site of invasive infection is a hall-

mark of intestinal shigellosis [91,92]. Of note, expression
of shiA is induced under anaerobiosis. This gene in the
SHI-2 pathogenicity island encodes a factor that attenu-
ates the intestinal inflammatory response in shigellosis
by decreasing the recruitment of polymorphonuclear

Figure 3 Circular map of genes differentially expressed in the virulence plasmid under anaerobiosis. Outer ring shows ORFs and their
orientations. Genes differentially repressed and induced in the wild type M90T strain under anaerobiosis in relation to aerobic conditions were
marked in deep blue and red respectively. Scale is in base pairs. The figure was generated with DNAPlotter.
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Figure 4 qRT-PCR verification of S. flexneri virulence plasmid genes repressed under anaerobic growth conditions and the role of FNR
in the repression. Strand specific qRT-PCR analysis of S. flexneri M90T virulence plasmid genes mRNA levels shown to be repressed in RNA-seq
analysis. Data were calculated as the n-fold difference relative to polA (2-ΔCt, where ΔCt represents the difference in threshold cycle between the
target and control genes). Results are shown in relation to the wild-type 2-ΔCt levels under aerobic conditions (referred to as 1). Values greater
than 1 indicate increased transcription under anaerobiosis, while lower than 1 indicate the opposite. Significant differences were detected with
the wild-type strain 2-ΔCt levels under aerobic and anaerobic conditions, or wild-type vs. Δfnr 2-ΔCt levels under anaerobiosis were compared. P <0.01,
**; n = 4; Mann–Whitney test. Error bars show Standard Deviation (SD).

Figure 5 qRT-PCR verification of S. flexneri virulence plasmid genes induced under anaerobic growth conditions and the role of FNR in
the induction. Strand specific qRT-PCR analysis of S. flexneri M90T virulence genes mRNA levels shown to be induced in RNA-seq analysis. Data
were calculated as the n-fold difference relative to polA (2-ΔCt, where ΔCt represents the difference in threshold cycle between the target and
control genes). Results are shown in relation to the wild-type 2-ΔCt levels under aerobic conditions (referred to as 1). Values greater than 1 indicate
increased transcription under anaerobiosis, while lower than 1 indicate the opposite. Significant differences were detected with the wild-type
strain 2-ΔCt levels under aerobic and anaerobic conditions, or wild-type vs. Δfnr 2-ΔCt levels under anaerobiosis were compared. P < 0.05, *; P <0.01,
**; n = 4; Mann–Whitney test. Error bars show standard deviation (SD).
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leukocytes and T-cells [68,93]. Similarly OspI is the only
T3SS-effector protein that was overexpressed in anaerobi-
osis; it also serves to dampen inflammatory responses by
deaminating a glutamine in host ubiquitin-conjugating
enzyme (UBC13) [94]. Thus, expression of both ShiA and
OspI under low oxygen tension might dampen the extent
of inflammatory responses to Shigella while it is in the an-
oxic environment of the intestinal lumen, impairing
immune responses. Only one operon on the virulence
plasmid, shf-rfbU-virK-msbB, was induced under anaero-
biosis in an FNR-dependent manner. Interestingly, all
these genes are implicated in modification of Shigella lipo-
polysaccharide (LPS), an important pro-inflammatory me-
diator [95-99].
The transcription of several genes encoding OMPs

was induced under anaerobic growth. Both OmpA and
OmpC have been implicated in Shigella virulence, while
our results suggest that Tsx, Slp, NmpC, SlyB and YciD
(OmpW) could also contribute to pathogenesis and be
considered as potential vaccine targets [100,101]. Indeed,
Salmonella OmpW, Tsx and NmpC have already been
demonstrated to be immunogenic [102,103]. In addition
to OMPs, transcription of gapA, which encodes glyceral-
dehyde-3-phosphate dehydrogenase, was induced under
anaerobic conditions. Interestingly, this enzyme is ex-
ported by EHEC and enteropathogenic E. coli (EPEC)
strains but not by non-pathogenic strains. Due to its abil-
ity to interact with plasminogen, fibrinogen and intestinal
epithelial cells, it has been suggested that GapA might

contribute in vivo to the interaction of EHEC and EPEC
with the gut epithelium [104].

Conclusions
Overall, our RNA-seq based analysis revealed that in the
anaerobic lumen of the intestine Shigella is predicted to
prompt both survival and anti-host immune-modulatory
activities of the bacterium. This occurs through a repro-
gramming of bacterial metabolism including altered
transcription of genes encoding transport systems and
metabolic pathways (Figure 7), likely reflecting the car-
bon energy sources available in the intestine. Modulation
of LPS, along with ShiA and OspI may enable Shigella to
subvert inflammatory responses prior to mucosal inva-
sion. Our results highlight the central role of oxygen and
FNR in these processes and how it governs bacterial in-
teractions and entry into host cells [7,68].

Methods
Bacterial strains and culture conditions
Bacterial strains and plasmids used in this study are
shown in Additional file 1: Table S4. E. coli strains were
grown in Luria-Bertani (LB; Invitrogen) broth or on LB
agar plates while S. flexneri was propagated either in LB
broth, tryptic soy broth (TCS; Sigma) or on TCS plates
with Congo red (0.01%, Sigma). Experiments under an-
aerobiosis were performed in an anaerobic workstation
(Whitley A35). When required, antibiotics were added at
the following concentrations: chloramphenicol 20 μg/ml,
ampicillin 100 μg/ml.

Deletion of fnr gene and complementation experiments
The fnr deletion mutant was generated by allelic ex-
change using pKO3blue plasmid as previously described
[105]. Oligonucleotide primers used in this study are
listed in Additional file 1: Table S5. Complementation of
Δfnr mutant was performed with pBM2, a derivative of
pBBR1MCS-4 plasmid that carries a copy of fnr gene
under the control of its native promoter. The plasmid
pBBR1MCS-4 was used as a control (See Additional file 1:
Table S4). The absence of FNR in the Δfnr mutant and its
presence in the complemented strain was confirmed by
western blot using polyclonal antibodies against FNR as
previously described [7] (See Additional file 1: Figure S1).

Table 3 sRNAs differentially expressed in response to anaerobic conditions

sRNAa Adjacent genes Description/class Length
(nt)

RNA-seqb log2FC RNA-seqb log2FC

WT no O2/O2 Δfnr/WT no O2

csrB syd/SF5M90T_2595 protein-binding sRNA 360 4.97

csrC yihi/yihA protein-binding sRNA 245 3.38
asRNAs are arranged in descending order in relation to Log2 of Fold Change values of WT no O2/WT O2 comparison.
bLog2 of Fold Change values of WT no O2/WT O2 and Δfnr no O2/WT no O2 comparisons are presented. Only values considered differentially expressed are shown
(p adjust <0.05).

Figure 6 Verification of sRNAs results by Northern Blot.
Northern blot analysis of csrB and crsC sRNAs expression under
aerobic/anaerobic conditions. 10 μg of total RNA obtained from S.
flexneri M90T wild‐type strain and its isogenic Δfnr mutant grown
under aerobic and anaerobic conditions until OD600 = 0.2 were
separated in 1,25% MOPS‐agarose gels, transferred to membranes
and detected using probes specific for the sense strand.
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DNA and RNA extraction methods
S. flexneri M90T genomic DNA for sequencing was iso-
lated as previously described [106]. For RNA extraction
bacteria were grown in LB medium with and without
oxygen. A 5 ml pre-inoculum was grown over night
aerobically or anaerobically with shaking conditions.
The pre-inoculums were diluted proportionally to their
OD600nm to standardize the input of bacteria to a start-
ing OD600nm of 0.005. Cultures (volume, 175 ml in 1 L
flasks) were grown at 37°C, under shaking conditions
(200 rpm) until the OD600nm reached 0.2. Three biological
replicates were performed for each condition. Total RNA
from bacterial pellets was extracted using TRIzol reagent
method as previously described [107]. RNA qualities were
determined using Agilent RNA Nano Chips (Agilent
Technologies).
Genomic DNA was removed from RNA samples using

TURBO DNase (Ambion) followed by a second DNase
treatment with DNase I (Roche). DNase I treatment was
repeated until DNA was not detected by genome-
specific PCRs targeting four housekeeping genes (trpB,
thrB, purN and mdh) (Additional file 1: Table S5). The
RNA quality after DNase treatments was checked using
Agilent RNA Nano Chips.
For RNA-seq, total RNA was reverse transcribed using

SuperScript III reverse transcriptase (Invitrogen). Acti-
nomycin D (6 μg/ml, Sigma) was added to the reaction
to avoid spurious second-strand cDNA synthesis [108].
cDNA was purified using QIAquick PCR purification kit
(Qiagen) and used for single stranded cDNA library con-
struction as previously [109,110]. FRT-seq Illumina li-
braries were constructed as previously described [111].

Reference genome, sequencing, read mapping and
statistic analysis
The genome of S. flexneri M90T was sequenced at Well-
come Trust Sanger Institute using an Illumina HiSeq
2000 sequencer. A total of 0.7 Gb sequence data, in

75-bp paired reads, was obtained (acc. no. ERS033387)
and assembled de novo using Velvet [112]. This assembled
sequence, which is rich in IS1 elements and for which no
attempt of gap closure was performed, is comprised of
501 contigs with a total size of 4.43 Mb. A M90T draft an-
notated genome was prepared and the annotation trans-
ferred from S. flexneri strain 8401 (acc. no. CP000266).
Rfam searches were performed and the features identified
were included in the annotation as well as Shigella pub-
lished sRNAs [69,70]. This draft genome was used as ref-
erence for the mapping of RNA-seq reads [113]. During
the course of our study the S. flexneri M90T genome was
published [114]. Therefore, final expression results are
given using this latter locus tag systematic names for cod-
ing sequences.
RNA Sequencing was performed using an Illumina

HiSeq 2000 sequencer. Raw data as well as mapped
reads obtained per replicate were averaged per sample/
condition and summarized, together with other interesting
quality control parameters, in Additional file 1: Table S3.
Processing of reads after mapping included the unmark-
ing of duplicate reads followed by correction to allow for
directional fidelity of the data [115]. Output files in-
cluded per sample, a matrix of readcounts and RPKM
values on both sense and antisense strands for genes as
well as for automatic 50 bp+/− trimmed intergenic fea-
tures created in the + strand. The R package DESeq,
which implements negative binomial distribution statis-
tics for RNA-seq data was used for statistical analysis
[116]. A logarithmic transformed version of the count
data (log(x + 1)) was used to avoid zero count values
[117]. A p adjust value <0.05, which controls false dis-
covery rate, was used for the cut-off calling of differential
expression between conditions. Independent runs of ana-
lysis were carried out for sense and antisense directions.
Ribosomal genes and repeated sequences, such as trans-
posases or insertion sequences, were filtered out from
final tables.

Figure 7 Summary of novel genes influenced by the absence of oxygen in Shigella identified by RNA-seq.
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Strand-specific quantitative RT-PCR and Northern blot
A StepOnePlus Real Time PCR system (Applied Biosys-
tems) was used to monitor real-time quantitative PCR.
First-strand cDNA was synthesized as previously de-
scribed but using genome specific primers carrying a tag
sequence in the 5′-end instead of random primers. This
tag sequence was unique and not found in the genome
of S. flexneri M90T. Subsequent PCRs were performed
using Power SYBR Green PCR Master Mix (Applied
Biosystems) and the tag sequence as one of the paired
primers (See Additional file 1: Table S5). As a result,
only cDNAs synthesized with a 5′-end tagged primer
were amplified. Results are the average of triplicate ex-
periments performed, on at least four independent occa-
sions. Data were expressed relative to polA mRNA
levels. To monitor the specificity, final PCR products
were analyzed by melting curves. Only samples with no
amplification in the control aliquots (not subjected to
reverse transcription) were included in the study. The
amount of transcripts was expressed as the n-fold differ-
ence relative to the control gene (2-ΔCt where ΔCt repre-
sents the difference in threshold cycles between the target
and control genes). Results were shown in relation to wild
type 2-ΔCt levels under aerobic conditions, which were re-
ferred as 1. Thus, values greater than 1 indicate increased
transcription in relation to the wild-type under aerobic
conditions, and lower than 1 indicate the opposite. Signifi-
cant differences were detected with Mann–Whitney test;
values with P <0.05 were considered as significant.
Northern blots were performed as previously described

[118]. Radiolabeled RNA probes synthesized with the
MAXIscript kit (Ambion) were used to detect specifically
the sense of the RNA-targets. The primers used for probes
synthesis are listed in Additional file 1: Table S5.

Availability of supporting data
RNA-seq data has been submitted to the European Nu-
cleotide Archive with accession code ERP003817 and the
experiment has an ArrayExpress acc. no. E-ERAD-204.

Additional file

Additional file 1: Table S1. Chromosomal genes differentially expressed
in response to anaerobic conditions and the role of FNR in the induction.
This table shows the chromosomal genes differentially expressed in RNA-seq
analysis in wild-type S. flexneri M90T grown under anaerobic conditions
compared to aerobic conditions, and in Δfnr mutant in relation to wild-type
S. flexneri M90T when grown under anaerobic conditions. Genes are
classified into functional categories based on the database of Clusters of
Orthologous Groups (COGs). Table S2. FNR regulon under anaerobic
conditions. This table contains all genes differentially expressed in the Δfnr
mutant in relation to the wild-type S. flexneri M90T when grown under
anaerobic conditions. RNA-seq and FRT-seq results are presented. Table S3.
Summary of mapping statistics. Table S4. Strains and plasmids used in this
study. Table S5. Oligonucleotides used in this study. Figure S1.
Characterization of M90T Δfnr mutant. This figure confirms the absence of
FNR in the Δfnr mutant and shows the growth curve of the mutant in

comparison to the wild-type strain M90T and the complemented mutant
under anaerobic conditions.
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