2,156,142 research outputs found
Extensive-form games and strategic complementarities
I prove the subgame-perfect equivalent of the basic result for Nash equilibria in normal-form games of strategic complements: the set of subgame-perfect equilibria is a nonempty, complete lattice—in particular, subgame-perfect Nash equilibria exist. For this purpose I introduce a device that allows the study of the set of subgame-perfect equilibria as the set of fixed points of a correspondence. My results are limited because extensive-form games of strategic complementarities turn out—surprisingly—to be a very restrictive class of games
Dirichlet sets and Erdos-Kunen-Mauldin theorem
By a theorem proved by Erdos, Kunen and Mauldin, for any nonempty perfect set
on the real line there exists a perfect set of Lebesgue measure zero
such that . We prove a stronger version of this theorem in
which the obtained perfect set is a Dirichlet set. Using this result we
show that for a wide range of familes of subsets of the reals, all additive
sets are perfectly meager in transitive sense. We also prove that every proper
analytic subgroup of the reals is contained in an F-sigma set such that
is a meager null set.Comment: 9 page
Clique-Stable Set separation in perfect graphs with no balanced skew-partitions
Inspired by a question of Yannakakis on the Vertex Packing polytope of
perfect graphs, we study the Clique-Stable Set Separation in a non-hereditary
subclass of perfect graphs. A cut (B,W) of G (a bipartition of V(G)) separates
a clique K and a stable set S if and . A
Clique-Stable Set Separator is a family of cuts such that for every clique K,
and for every stable set S disjoint from K, there exists a cut in the family
that separates K and S. Given a class of graphs, the question is to know
whether every graph of the class admits a Clique-Stable Set Separator
containing only polynomially many cuts. It is open for the class of all graphs,
and also for perfect graphs, which was Yannakakis' original question. Here we
investigate on perfect graphs with no balanced skew-partition; the balanced
skew-partition was introduced in the proof of the Strong Perfect Graph Theorem.
Recently, Chudnovsky, Trotignon, Trunck and Vuskovic proved that forbidding
this unfriendly decomposition permits to recursively decompose Berge graphs
using 2-join and complement 2-join until reaching a basic graph, and they found
an efficient combinatorial algorithm to color those graphs. We apply their
decomposition result to prove that perfect graphs with no balanced
skew-partition admit a quadratic-size Clique-Stable Set Separator, by taking
advantage of the good behavior of 2-join with respect to this property. We then
generalize this result and prove that the Strong Erdos-Hajnal property holds in
this class, which means that every such graph has a linear-size biclique or
complement biclique. This property does not hold for all perfect graphs (Fox
2006), and moreover when the Strong Erdos-Hajnal property holds in a hereditary
class of graphs, then both the Erdos-Hajnal property and the polynomial
Clique-Stable Set Separation hold.Comment: arXiv admin note: text overlap with arXiv:1308.644
Efficient and Perfect domination on circular-arc graphs
Given a graph , a \emph{perfect dominating set} is a subset of
vertices such that each vertex is
dominated by exactly one vertex . An \emph{efficient dominating set}
is a perfect dominating set where is also an independent set. These
problems are usually posed in terms of edges instead of vertices. Both
problems, either for the vertex or edge variant, remains NP-Hard, even when
restricted to certain graphs families. We study both variants of the problems
for the circular-arc graphs, and show efficient algorithms for all of them
- …
