1,251 research outputs found

    Pair extended coupled cluster doubles

    Get PDF
    The accurate and efficient description of strongly correlated systems remains an important challenge for computational methods. Doubly occupied configuration interaction (DOCI), in which all electrons are paired and no correlations which break these pairs are permitted, can in many cases provide an accurate account of strong correlations, albeit at combinatorial computational cost. Recently, there has been significant interest in a method we refer to as pair coupled cluster doubles (pCCD), a variant of coupled cluster doubles in which the electrons are paired. This is simply because pCCD provides energies nearly identical to those of DOCI, but at mean-field computational cost (disregarding the cost of the two-electron integral transformation). Here, we introduce the more complete pair extended coupled cluster doubles (pECCD) approach which, like pCCD, has mean-field cost and reproduces DOCI energetically. We show that unlike pCCD, pECCD also reproduces the DOCI wave function with high accuracy. Moreoever, pECCD yields sensible albeit inexact results even for attractive interactions where pCCD breaks down.Comment: submitted manuscrip

    Polynomial Similarity Transformation Theory: A smooth interpolation between coupled cluster doubles and projected BCS applied to the reduced BCS Hamiltonian

    Get PDF
    We present a similarity transformation theory based on a polynomial form of a particle-hole pair excitation operator. In the weakly correlated limit, this polynomial becomes an exponential, leading to coupled cluster doubles. In the opposite strongly correlated limit, the polynomial becomes an extended Bessel expansion and yields the projected BCS wavefunction. In between, we interpolate using a single parameter. The effective Hamiltonian is non-hermitian and this Polynomial Similarity Transformation Theory follows the philosophy of traditional coupled cluster, left projecting the transformed Hamiltonian onto subspaces of the Hilbert space in which the wave function variance is forced to be zero. Similarly, the interpolation parameter is obtained through minimizing the next residual in the projective hierarchy. We rationalize and demonstrate how and why coupled cluster doubles is ill suited to the strongly correlated limit whereas the Bessel expansion remains well behaved. The model provides accurate wave functions with energy errors that in its best variant are smaller than 1\% across all interaction stengths. The numerical cost is polynomial in system size and the theory can be straightforwardly applied to any realistic Hamiltonian

    Actinide chemistry using singlet-paired coupled cluster and its combinations with density functionals

    Get PDF
    Singlet-paired coupled cluster doubles (CCD0) is a simplification of CCD that relinquishes a fraction of dynamic correlation in order to be able to describe static correlation. Combinations of CCD0 with density functionals that recover specifically the dynamic correlation missing in the former have also been developed recently. Here, we assess the accuracy of CCD0 and CCD0+DFT (and variants of these using Brueckner orbitals) as compared to well-established quantum chemical methods for describing ground-state properties of singlet actinide molecules. The f0f^0 actinyl series (UO22+_2^{2+}, NpO22+_2^{2+}, PuO22+_2^{2+}), the isoelectronic NUN, and Thorium (ThO, ThO2+^{2+}) and Nobelium (NoO, NoO2_2) oxides are studied.Comment: 8 page

    Excited States From State Specific Orbital Optimized Pair Coupled Cluster

    Full text link
    The pair coupled cluster doubles (pCCD) method (where the excitation manifold is restricted to electron pairs) has a series of interesting features. Among others, it provides ground-state energies very close to what is obtained with doubly-occupied configuration interaction (DOCI), but with polynomial cost (compared with the exponential cost of the latter). Here, we address whether this similarity holds for excited states, by exploring the symmetric dissociation of the linear \ce{H4} molecule. When ground-state Hartree-Fock (HF) orbitals are employed, pCCD and DOCI excited-state energies do not match, a feature that is assigned to the poor HF reference. In contrast, by optimizing the orbitals at the pCCD level (oo-pCCD) specifically for each excited state, the discrepancies between pCCD and DOCI decrease by one or two orders of magnitude. Therefore, the pCCD and DOCI methodologies still provide comparable energies for excited states, but only if suitable, state-specific orbitals are adopted. We also assessed whether a pCCD approach could be used to directly target doubly-excited states, without having to resort to the equation-of-motion (EOM) formalism. In our Δ\Deltaoo-pCCD model, excitation energies were extracted from the energy difference between separate oo-pCCD calculations for the ground state and the targeted excited state. For a set comprising the doubly-excited states of \ce{CH+}, \ce{BH}, nitroxyl, nitrosomethane, and formaldehyde, we found that Δ\Deltaoo-pCCD provides quite accurate excitation energies, with root mean square deviations (with respect to full configuration interaction results) lower than CC3 and comparable to EOM-CCSDT, two methods with much higher computational cost.Comment: 12 pages, 4 figure
    • …
    corecore