362,420 research outputs found

    Partitioning Regular Polygons into Circular Pieces I: Convex Partitions

    Get PDF
    We explore an instance of the question of partitioning a polygon into pieces, each of which is as ``circular'' as possible, in the sense of having an aspect ratio close to 1. The aspect ratio of a polygon is the ratio of the diameters of the smallest circumscribing circle to the largest inscribed disk. The problem is rich even for partitioning regular polygons into convex pieces, the focus of this paper. We show that the optimal (most circular) partition for an equilateral triangle has an infinite number of pieces, with the lower bound approachable to any accuracy desired by a particular finite partition. For pentagons and all regular k-gons, k > 5, the unpartitioned polygon is already optimal. The square presents an interesting intermediate case. Here the one-piece partition is not optimal, but nor is the trivial lower bound approachable. We narrow the optimal ratio to an aspect-ratio gap of 0.01082 with several somewhat intricate partitions.Comment: 21 pages, 25 figure

    Fat Polygonal Partitions with Applications to Visualization and Embeddings

    Get PDF
    Let T\mathcal{T} be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T\mathcal{T} is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in Rd\mathbb{R}^d. We use these partitions with slack for embedding ultrametrics into dd-dimensional Euclidean space: we give a polylog(Δ)\mathop{\rm polylog}(\Delta)-approximation algorithm for embedding nn-point ultrametrics into Rd\mathbb{R}^d with minimum distortion, where Δ\Delta denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. The previously best-known approximation ratio for this problem was polynomial in nn. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.Comment: 26 page

    Partitioning Regular Polygons into Circular Pieces II:Nonconvex Partitions

    Get PDF
    We explore optimal circular nonconvex partitions of regular k-gons. The circularity of a polygon is measured by its aspect ratio: the ratio of the radii of the smallest circumscribing circle to the largest inscribed disk. An optimal circular partition minimizes the maximum ratio over all pieces in the partition. We show that the equilateral triangle has an optimal 4-piece nonconvex partition, the square an optimal 13-piece nonconvex partition, and the pentagon has an optimal nonconvex partition with more than 20 thousand pieces. For hexagons and beyond, we provide a general algorithm that approaches optimality, but does not achieve it.Comment: 13 pages, 11 figure

    The Online Disjoint Set Cover Problem and its Applications

    Full text link
    Given a universe UU of nn elements and a collection of subsets S\mathcal{S} of UU, the maximum disjoint set cover problem (DSCP) is to partition S\mathcal{S} into as many set covers as possible, where a set cover is defined as a collection of subsets whose union is UU. We consider the online DSCP, in which the subsets arrive one by one (possibly in an order chosen by an adversary), and must be irrevocably assigned to some partition on arrival with the objective of minimizing the competitive ratio. The competitive ratio of an online DSCP algorithm AA is defined as the maximum ratio of the number of disjoint set covers obtained by the optimal offline algorithm to the number of disjoint set covers obtained by AA across all inputs. We propose an online algorithm for solving the DSCP with competitive ratio lnn\ln n. We then show a lower bound of Ω(lnn)\Omega(\sqrt{\ln n}) on the competitive ratio for any online DSCP algorithm. The online disjoint set cover problem has wide ranging applications in practice, including the online crowd-sourcing problem, the online coverage lifetime maximization problem in wireless sensor networks, and in online resource allocation problems.Comment: To appear in IEEE INFOCOM 201

    Constraints on Flavored 2d CFT Partition Functions

    Full text link
    We study the implications of modular invariance on 2d CFT partition functions with abelian or non-abelian currents when chemical potentials for the charges are turned on, i.e. when the partition functions are "flavored". We begin with a new proof of the transformation law for the modular transformation of such partition functions. Then we proceed to apply modular bootstrap techniques to constrain the spectrum of charged states in the theory. We improve previous upper bounds on the state with the greatest "mass-to-charge" ratio in such theories, as well as upper bounds on the weight of the lightest charged state and the charge of the weakest charged state in the theory. We apply the extremal functional method to theories that saturate such bounds, and in several cases we find the resulting prediction for the occupation numbers are precisely integers. Because such theories sometimes do not saturate a bound on the full space of states but do saturate a bound in the neutral sector of states, we find that adding flavor allows the extremal functional method to solve for some partition functions that would not be accessible to it otherwise.Comment: 45 pages, 16 Figures v3: typos corrected, expanded appendix on numeric implementatio
    corecore