9,765 research outputs found

    Thatched Partial Orders

    No full text
    A thatch is a type of partial ordering which is most naturally described as a geometric construction. The geometry of these constructions is outlined in this note. A wait-and-see concurrent process may include any number of sub-processes, each regarded as a separate thread of execution. However if at any point the process launches a collection of concurrent threads it must wait and see how they terminate before proceeding. Each sub-process may also launch further sub-processes, which are also subject to the wait and see restriction. A wait-and-see process can be regarded as a thatch. This note describes some interesting mathematical properties of thatching that are relevant to these concurrent processes

    Category forcings, MM+++MM^{+++}, and generic absoluteness for the theory of strong forcing axioms

    Get PDF
    We introduce a category whose objects are stationary set preserving complete boolean algebras and whose arrows are complete homomorphisms with a stationary set preserving quotient. We show that the cut of this category at a rank initial segment of the universe of height a super compact which is a limit of super compact cardinals is a stationary set preserving partial order which forces MM++MM^{++} and collapses its size to become the second uncountable cardinal. Next we argue that any of the known methods to produce a model of MM++MM^{++} collapsing a superhuge cardinal to become the second uncountable cardinal produces a model in which the cutoff of the category of stationary set preserving forcings at any rank initial segment of the universe of large enough height is forcing equivalent to a presaturated tower of normal filters. We let MM+++MM^{+++} denote this statement and we prove that the theory of L(Ordω1)L(Ord^{\omega_1}) with parameters in P(ω1)P(\omega_1) is generically invariant for stationary set preserving forcings that preserve MM+++MM^{+++}. Finally we argue that the work of Larson and Asper\'o shows that this is a next to optimal generalization to the Chang model L(Ordω1)L(Ord^{\omega_1}) of Woodin's generic absoluteness results for the Chang model L(Ordω)L(Ord^{\omega}). It remains open whether MM+++MM^{+++} and MM++MM^{++} are equivalent axioms modulo large cardinals and whether MM++MM^{++} suffices to prove the same generic absoluteness results for the Chang model L(Ordω1)L(Ord^{\omega_1}).Comment: - to appear on the Journal of the American Mathemtical Societ

    Partial orders on partial isometries

    Get PDF
    This paper studies three natural pre-orders of increasing generality on the set of all completely non-unitary partial isometries with equal defect indices. We show that the problem of determining when one partial isometry is less than another with respect to these pre-orders is equivalent to the existence of a bounded (or isometric) multiplier between two natural reproducing kernel Hilbert spaces of analytic functions. For large classes of partial isometries these spaces can be realized as the well-known model subspaces and deBranges-Rovnyak spaces. This characterization is applied to investigate properties of these pre-orders and the equivalence classes they generate.Comment: 30 pages. To appear in Journal of Operator Theor

    On multivariate quantiles under partial orders

    Full text link
    This paper focuses on generalizing quantiles from the ordering point of view. We propose the concept of partial quantiles, which are based on a given partial order. We establish that partial quantiles are equivariant under order-preserving transformations of the data, robust to outliers, characterize the probability distribution if the partial order is sufficiently rich, generalize the concept of efficient frontier, and can measure dispersion from the partial order perspective. We also study several statistical aspects of partial quantiles. We provide estimators, associated rates of convergence, and asymptotic distributions that hold uniformly over a continuum of quantile indices. Furthermore, we provide procedures that can restore monotonicity properties that might have been disturbed by estimation error, establish computational complexity bounds, and point out a concentration of measure phenomenon (the latter under independence and the componentwise natural order). Finally, we illustrate the concepts by discussing several theoretical examples and simulations. Empirical applications to compare intake nutrients within diets, to evaluate the performance of investment funds, and to study the impact of policies on tobacco awareness are also presented to illustrate the concepts and their use.Comment: Published in at http://dx.doi.org/10.1214/10-AOS863 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Extending Utility Representations of Partial Orders

    Full text link
    The problem is considered as to whether a monotone function defined on a subset P of a Euclidean space can be strictly monotonically extended to the whole space. It is proved that this is the case if and only if the function is {\em separably increasing}. Explicit formulas are given for a class of extensions which involves an arbitrary bounded increasing function. Similar results are obtained for monotone functions that represent strict partial orders on arbitrary abstract sets X. The special case where P is a Pareto subset is considered.Comment: 15 page
    • …
    corecore