14,087 research outputs found

    Comparing and contrasting development and reproductive strategies in the pupal hyperparasitoids Lysibia nana and Gelis agilis (Hymenoptera: Ichneumonidae)

    Get PDF
    In most animals, the optimal phenotype is determined by trade-offs in life-history traits. Here, I compare development and reproductive strategies in two species of solitary secondary hyperparasitoids, Lysibia nana and Gelis agilis, attacking pre-pupae of their primary parasitoid host, Cotesia glomerata. Parasitoid larvae of both species exploit a given amount of host resources with similar efficiency. However, adults exhibit quite different reproductive strategies. Both species are synovigenic, and female wasps emerge with no mature eggs. However, G. agilis must first host-feed to produce eggs, while L. nana does not host-feed but mobilizes internal resources carried over from larval feeding to initiate oogenesis. Further, G. agilis is wingless, produces large eggs, has a long life-span, and generates only small numbers of progeny per day, whereas these traits are reversed in L. nana. Given unlimited hosts, the fecundity curve in L. nana was “front-loaded,” whereas in G. agilis it was depressed and extended over much of adult life. In L. nana (but not G. agilis), wasps provided with honey but no hosts lived significantly longer than wasps provided with both honey and hosts. Differences in the fecundity curves of the two hyperparasitoids are probably based on differing costs of reproduction between them, with the wingless G. agilis much more constrained in finding hosts than the winged L. nana. Importantly, L. nana is known to be a specialist hyperparasitoid of gregarious Cotesia species that pupate in exposed locations on the food plant, whereas Gelis sp. attack and develop in divergent hosts such as parasitoid cocoons, moth pupae and spider egg sacs. Consequently, there is a strong match between brood size in C. glomerata and egg production in L. nana, but a mismatch between these parameters in G. agilis.

    Eco control of agro pests using imaging, modelling & natural predators

    Get PDF
    Caterpillars in their various forms: size, shape, and colour cause significant harm to crops and humans. This paper offers a solution for the detection and control of caterpillars through the use of a sustainable pest control system that does not require the application of chemical pesticides, which damage human health and destroy the naturally beneficial insects within the environment. The proposed system is capable of controlling 80% of the population of caterpillars in less than 65 days by deploying a controlled number of larval parasitoid wasps (Cotesia Flavipes, Cameron) into the crop environment. This is made possible by using a continuous time model of the interaction between the caterpillar and the Cotesia Flavipes (Cameron) wasps using a set of simultaneous, non-linear, ordinary differential equations incorporating natural death rates based on the Weibull probability distribution function. A negative binomial distribution is used to model the efficiency and the probability that the wasp will find and parasitize a host larva. The caterpillar is presented in all its life-cycle stages of: egg, larva, pupa and adult and the Cotesia Flavipes (Cameron) wasp is present as an adult larval parasitoid. Biological control modelling is used to estimate the quantity of the Cotesia Flavipes (Cameron) wasps that should be introduced into the caterpillar infested environment to suppress its population density to an economically acceptable level within a prescribed number of days. Keywords

    No Intersexual Differences in Host Size and Species Usage in \u3ci\u3eSpalangia Endius\u3c/i\u3e (Hymenoptera: Pteromalidae)

    Get PDF
    Spalangia endius were collected from fly pupae, primarily house fly and stable fly, from a poultry house in Indiana. Male and female wasps did not differ within and across host species in host size usage. Also, despite stable fly pupae being significantly smaller than house fly pupae, the proportion of male wasps emerging from the two host species was similar

    Intrinsic competition and its effects on the survival and development of three species of endoparasitoid wasps

    Get PDF
    In natural systems, pre-adult stages of some insect herbivores are known to be attacked by several species of parasitoids. Under certain conditions, hosts may be simultaneously parasitized by more than one parasitoid species (= multiparasitism), even though only one parasitoid species can successfully develop in an individual host. Here, we compared development, survival, and intrinsic competitive interactions among three species of solitary larval endoparasitoids, Campoletis sonorensis (Cameron) (Hymenoptera: Ichneumonidae), Microplitis demolitor Wilkinson, and Microplitis croceipes (Cresson) (Hymenoptera: Braconidae), in singly parasitized and multiparasitized hosts. The three species differed in certain traits, such as in host usage strategies and adult body size. Campoletis sonorensis and M. demolitor survived equally well to eclosion in two host species that differed profoundly in size, Pseudoplusia includens (Walker) and the larger Heliothis virescens (Fabricius) (both Lepidoptera: Noctuidae). Egg-to-adult development time in C. sonorensis and M. demolitor also differed in the two hosts. Moreover, adult body mass in C. sonorensis (and not M. demolitor) was greater when developing in H. virescens larvae. We then monitored the outcome of competitive interactions in host larvae that were parasitized by one parasitoid species and subsequently multiparasitized by another species at various time intervals (0, 6, 24, and 48 h) after the initial parasitism. These experiments revealed that M. croceipes was generally a superior competitor to the other two species, whereas M. demolitor was the poorest competitor, with C. sonorensis being intermediate in this capacity. However, competition sometimes incurred fitness costs in M. croceipes and C. sonorensis, with longer development time and/or smaller adult mass observed in surviving wasps emerging from multiparasitized hosts. Our results suggest that rapid growth and large size relative to competitors of a similar age may be beneficial in aggressive intrinsic competitio

    The evolution of gregariousness in parasitoid wasps

    Get PDF
    Data are assembled on the clutch-size strategies adopted by extant species of parasitoid wasp. These data are used to reconstruct the history of clutch-size evolution in the group using a series of plausible evolutionary assumptions. Extant families are either entirely solitary, both solitary and gregarious, or else clutch size is unknown. Parsimony analysis suggests that the ancestors of most families were solitary, a result which is robust to different phylogenetic relationships and likely data inadequacies. This implies that solitariness was ubiquitous throughout the initial radiation of the group, and that transitions to gregariousness have subsequently occurred a minimum of 43 times in several, but not all lineages. Current data suggest that species-rich and small-bodied lineages are more likely to have evolved gregariousness, and contain more species with small gregarious brood sizes. I discuss the implications of these data for clutch-size theory

    Investigations into stability in the fig/ fig-wasp mutualism

    Get PDF
    Fig trees (Ficus, Moraceae) and their pollinating wasps (Chalcidoidea, Agaonidae) are involved in an obligate mutualism where each partner relies on the other in order to reproduce: the pollinating fig wasps are a fig tree’s only pollen disperser whilst the fig trees provide the wasps with places in which to lay their eggs. Mutualistic interactions are, however, ultimately genetically selfish and as such, are often rife with conflict. Fig trees are either monoecious, where wasps and seeds develop together within fig fruit (syconia), or dioecious, where wasps and seeds develop separately. In interactions between monoecious fig trees and their pollinating wasps, there are conflicts of interest over the relative allocation of fig flowers to wasp and seed development. Although fig trees reap the rewards associated with wasp and seed production (through pollen and seed dispersal respectively), pollinators only benefit directly from flowers that nurture the development of wasp larvae, and increase their fitness by attempting to oviposit in as many ovules as possible. If successful, this oviposition strategy would eventually destroy the mutualism; however, the interaction has lasted for over 60 million years suggesting that mechanisms must be in place to limit wasp oviposition. This thesis addresses a number of factors to elucidate how stability may be achieved in monoecious fig systems. Possible mechanisms include: 1) a parasitoidcentred short ovipositor hypothesis in Ficus rubiginosa, which suggests that a subset of flowers are out of reach to parasitoid ovipositors making these ovules the preferred choice for ovipositing pollinators and allowing seeds to develop in less preferred ovules; 2) the presence of third-party mutualists such as non-pollinating fig wasps (F. burkei) and patrolling green tree ants on the fig surface (F. racemosa) that limit pollinator and parasitoid oviposition respectively; and 3) selection on fig morphology which constrains the size (and therefore fecundity) of the associated pollinators. I discuss the lack of evidence for a single unifying theory for mutualism stability and suggest that a more likely scenario is the presence of separate, and perhaps multiple, stabilising strategies in different fig/ fig-wasp partnerships

    Evolutionary Relationships of Courtship Songs in the Parasitic Wasp Genus, Cotesia (Hymenoptera: Braconidae)

    Get PDF
    Acoustic signals play an important role in premating isolation based on sexual selection within many taxa. Many male parasitic wasps produce characteristic courtship songs used by females in mate selection. In Cotesia (Hymenoptera: Braconidae: Microgastrinae), courtship songs are generated by wing fanning with repetitive pulses in stereotypical patterns. Our objectives were to sample the diversity of courtship songs within Cotesia and to identify underlying patterns of differentiation. We compared songs among 12 of ca. 80 Cotesia species in North America, including ten species that have not been recorded previously. For Cotesia congregata, we compared songs of wasps originating from six different host-foodplant sources, two of which are considered incipient species. Songs of emergent males from wild caterpillar hosts in five different families were recorded, and pattern, frequency, and duration of song elements analyzed. Principal component analysis converted the seven elements characterized into four uncorrelated components used in a hierarchical cluster analysis and grouped species by similarity of song structure. Species songs varied significantly in duration of repeating pulse and buzz elements and/or in fundamental frequency. Cluster analysis resolved similar species groups in agreement with the most recent molecular phylogeny for Cotesia spp., indicating the potential for using courtship songs as a predictor of genetic relatedness. Courtship song analysis may aid in identifying closely related cryptic species that overlap spatially, and provide insight into the evolution of this highly diverse and agriculturally important taxon

    Cold-storage of Piezodorus guildinii (Hemiptera: Pentatomidae) eggs for rearing Telenomus podisi (Hymenoptera: Platygastridae)

    Get PDF
    Piezodorus guildinii (Hemiptera: Pentatomidae) is an important soybean pest, and one of its main natural enemies is Telenomus podisi (Hymenoptera: Platygastridae). Rearing of the parasitoid is constrained by the hosts' egg quality, which deteriorates after few generations in laboratory, therefore, cold-stored host eggs utilization could be a useful tool for augmentative biological control. Thus, the objective was to evaluate the quality of P. guildinii cold-stored eggs, on the performance of parental and F1 generation of T. podisi. Hosteggs 24 hour old were stored at -18°C for one (N= 53), two (N= 28) or three months (N= 29), and approximately 40 host eggs were offered to a T. podisi female per treatment, for 48 hours. The control treatment consisted of 24-hour-old non-frozen host eggs, obtained and kept at 24°C (N= 55). Parental generation parasitism and progeny´s emergence on frozen eggs was significantly lower than on non-frozen eggs, even for the shorter storage period. Male proportion and preimaginal development time of the progeny increased with freezing period. However, parasitism proportion caused by adults of F1, and emergence, male proportion, and preimaginal development time of F2 were not affected. Although the performance of T. podisi on frozen P. guildinii eggs was significantly lower than on nonfrozen ones, host eggs storage for up to two months allowed obtaining a parasitism rate of 40% with a high emergence rate. This could be helpful enough to maintain mass rearings, mainly during the host hibernation period, and to enhance field parasitism when host is scarce.Fil: Cingolani, Maria Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Greco, Nancy Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Liljesthrom, Gerardo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; Argentin

    Unusual Sex Allocation in a Solitary Parasitoid Wasp, \u3ci\u3eSphaeropthalma Pensylvanica\u3c/i\u3e (Hymenoptera: Mutillidae)

    Get PDF
    Sphaeropthalma pensyluanica reared from cocoons of the organ pipe mud dauber, Trypoxylon politum from Georgia over several years yielded only adult males. Possible explanations for this sex-biased emergence from this host are (1) obligatory heteronomous heterotrophy, in which the two sexes develop on entirely different hosts; (2) differential mortality in the immature stage, with female larvae dying during development; and (3) facultative size- dependent sex allocation, with female eggs laid only on hosts smaller than T. politum
    corecore