394,594 research outputs found
Parametric Local Metric Learning for Nearest Neighbor Classification
We study the problem of learning local metrics for nearest neighbor
classification. Most previous works on local metric learning learn a number of
local unrelated metrics. While this "independence" approach delivers an
increased flexibility its downside is the considerable risk of overfitting. We
present a new parametric local metric learning method in which we learn a
smooth metric matrix function over the data manifold. Using an approximation
error bound of the metric matrix function we learn local metrics as linear
combinations of basis metrics defined on anchor points over different regions
of the instance space. We constrain the metric matrix function by imposing on
the linear combinations manifold regularization which makes the learned metric
matrix function vary smoothly along the geodesics of the data manifold. Our
metric learning method has excellent performance both in terms of predictive
power and scalability. We experimented with several large-scale classification
problems, tens of thousands of instances, and compared it with several state of
the art metric learning methods, both global and local, as well as to SVM with
automatic kernel selection, all of which it outperforms in a significant
manner
Analyze of Classification Accaptence Subsidy Food Using Kernel Discriminant
Subsidy food is government program for social protection to poor households. The aims of this program are to effort households from starve and to decrease poverty. Less precisely target of this program has negative impact. So that to successful program, it’s important to know accuracy classification of admission subsidy food. The variables classification are number of household members, number of household member in work, average expenditure capita, weighted household, and floor area. Discriminant analysis is a multivariate statistical technique which can be used to classify the new observation into a specific group. Kernel discriminant analysis is a non-parametric method which is flexible because it does not have to concern about assumption from certain distribution and equal variance matrices as in parametric discriminant analysis. The classification using the kernel discriminant analysis with the normal kernel function with optimum bandwidth 0.6 gives accurate classification 75.35%
A Multiple Cascade-Classifier System for a Robust and Partially Unsupervised Updating of Land-Cover Maps
A system for a regular updating of land-cover maps is proposed that is based on the use of multitemporal remote-sensing images. Such a system is able to face the updating problem under the realistic but critical constraint that, for the image to be classified (i.e., the most recent of the considered multitemporal data set), no ground truth information is available. The system is composed of an ensemble of partially unsupervised classifiers integrated in a multiple classifier architecture. Each classifier of the ensemble exhibits the following novel peculiarities: i) it is developed in the framework of the cascade-classification approach to exploit the temporal correlation existing between images acquired at different times in the considered area; ii) it is based on a partially unsupervised methodology capable to accomplish the classification process under the aforementioned critical constraint. Both a parametric maximum-likelihood classification approach and a non-parametric radial basis function (RBF) neural-network classification approach are used as basic methods for the development of partially unsupervised cascade classifiers. In addition, in order to generate an effective ensemble of classification algorithms, hybrid maximum-likelihood and RBF neural network cascade classifiers are defined by exploiting the peculiarities of the cascade-classification methodology. The results yielded by the different classifiers are combined by using standard unsupervised combination strategies. This allows the definition of a robust and accurate partially unsupervised classification system capable of analyzing a wide typology of remote-sensing data (e.g., images acquired by passive sensors, SAR images, multisensor and multisource data). Experimental results obtained on a real multitemporal and multisource data set confirm the effectiveness of the proposed system
Towards the optimal Pixel size of dem for automatic mapping of landslide areas
Determining appropriate spatial resolution of digital elevation model (DEM) is a key step for effective landslide analysis based on remote sensing data. Several studies demonstrated that choosing the finest DEM resolution is not always the best solution. Various DEM resolutions can be applicable for diverse landslide applications. Thus, this study aims to assess the influence of special resolution on automatic landslide mapping. Pixel-based approach using parametric and non-parametric classification methods, namely feed forward neural network (FFNN) and maximum likelihood classification (ML), were applied in this study. Additionally, this allowed to determine the impact of used classification method for selection of DEM resolution. Landslide affected areas were mapped based on four DEMs generated at 1m, 2m, 5m and 10m spatial resolution from airborne laser scanning (ALS) data. The performance of the landslide mapping was then evaluated by applying landslide inventory map and computation of confusion matrix. The results of this study suggests that the finest scale of DEM is not always the best fit, however working at 1m DEM resolution on micro-topography scale, can show different results. The best performance was found at 5m DEM-resolution for FFNN and 1m DEM resolution for results. The best performance was found to be using 5m DEM-resolution for FFNN and 1m DEM resolution for ML classification
Hybrid model using logit and nonparametric methods for predicting micro-entity failure
Following the calls from literature on bankruptcy, a parsimonious hybrid bankruptcy model is developed in this paper
by combining parametric and non-parametric approaches.To this end, the variables with the highest predictive power to
detect bankruptcy are selected using logistic regression (LR). Subsequently, alternative non-parametric methods
(Multilayer Perceptron, Rough Set, and Classification-Regression Trees) are applied, in turn, to firms classified as
either “bankrupt” or “not bankrupt”. Our findings show that hybrid models, particularly those combining LR and
Multilayer Perceptron, offer better accuracy performance and interpretability and converge faster than each method
implemented in isolation. Moreover, the authors demonstrate that the introduction of non-financial and macroeconomic
variables complement financial ratios for bankruptcy prediction
Statistical Models of Reconstructed Phase Spaces for Signal Classification
This paper introduces a novel approach to the analysis and classification of time series signals using statistical models of reconstructed phase spaces. With sufficient dimension, such reconstructed phase spaces are, with probability one, guaranteed to be topologically equivalent to the state dynamics of the generating system, and, therefore, may contain information that is absent in analysis and classification methods rooted in linear assumptions. Parametric and nonparametric distributions are introduced as statistical representations over the multidimensional reconstructed phase space, with classification accomplished through methods such as Bayes maximum likelihood and artificial neural networks (ANNs). The technique is demonstrated on heart arrhythmia classification and speech recognition. This new approach is shown to be a viable and effective alternative to traditional signal classification approaches, particularly for signals with strong nonlinear characteristics
- …
