766 research outputs found

    A parameter uniform fitted mesh method for a weakly coupled system of two singularly perturbed convection-diffusion equations

    Get PDF
    In this paper, a boundary value problem for a singularly perturbed linear system of two second order ordinary differential equations of convection- diffusion type is considered on the interval [0, 1]. The components of the solution of this system exhibit boundary layers at 0. A numerical method composed of an upwind finite difference scheme applied on a piecewise uniform Shishkin mesh is suggested to solve the problem. The method is proved to be first order convergent in the maximum norm uniformly in the perturbation parameters. Numerical examples are provided in support of the theory

    Second order parameter-uniform convergence for a finite difference method for a singularly perturbed linear reaction-diffusion system

    Get PDF
    A singularly perturbed linear system of second order ordinary differential equations of reaction-diffusion type with given boundary conditions is considered. The leading term of each equation is multiplied by a small positive parameter. These singular perturbation parameters are assumed to be distinct. The components of the solution exhibit overlapping layers. Shishkin piecewise-uniform meshes are introduced, which are used in conjunction with a classical finite difference discretisation, to construct a numerical method for solving this problem. It is proved that the numerical approximations obtained with this method is essentially second order convergent uniformly with respect to all of the parameters

    A non-autonomous stochastic discrete time system with uniform disturbances

    Full text link
    The main objective of this article is to present Bayesian optimal control over a class of non-autonomous linear stochastic discrete time systems with disturbances belonging to a family of the one parameter uniform distributions. It is proved that the Bayes control for the Pareto priors is the solution of a linear system of algebraic equations. For the case that this linear system is singular, we apply optimization techniques to gain the Bayesian optimal control. These results are extended to generalized linear stochastic systems of difference equations and provide the Bayesian optimal control for the case where the coefficients of these type of systems are non-square matrices. The paper extends the results of the authors developed for system with disturbances belonging to the exponential family

    A parameter robust numerical method for a two dimensional reaction-diffusion problem.

    Get PDF
    In this paper a singularly perturbed reaction-diffusion partial differential equation in two space dimensions is examined. By means of an appropriate decomposition, we describe the asymptotic behaviour of the solution of problems of this kind. A central finite difference scheme is constructed for this problem which involves an appropriate Shishkin mesh. We prove that the numerical approximations are almost second order uniformly convergent (in the maximum norm) with respect to the singular perturbation parameter. Some numerical experiments are given that illustrate in practice the theoretical order of convergence established for the numerical method
    corecore