113,140 research outputs found
Microvesicles as vehicles for tissue regeneration: Changing of the guards
Purpose of Review:
Microvesicles (MVs) have been recognised as mediators of stem cell function, enabling and guiding their regenerative effects.
Recent Findings:
MVs constitute one unique size class of extracellular vesicles (EVs) directly shed from the cell plasma membrane. They facilitate cell-to-cell communication via intercellular transfer of proteins, mRNA and microRNA (miRNA). MVs derived from stem cells, or stem cell regulatory cell types, have proven roles in tissue regeneration and repair processes. Their role in the maintenance of healthy tissue function throughout the life course and thus in age related health span remains to be elucidated.
Summary:
Understanding the biogenesis and mechanisms of action of MVs may enable the development of cell-free therapeutics capable of assisting in tissue maintenance and repair for a variety of age-related degenerative diseases. This review critically evaluates recent work published in this area and highlights important new findings demonstrating the use of MVs in tissue regeneration
Recommended from our members
Integrating the inputs that shape pancreatic islet hormone release.
The pancreatic islet is a complex mini organ composed of a variety of endocrine cells and their support cells, which together tightly control blood glucose homeostasis. Changes in glucose concentration are commonly regarded as the chief signal controlling insulin-secreting beta cells, glucagon-secreting alpha cells and somatostatin-secreting delta cells. However, each of these cell types is highly responsive to a multitude of endocrine, paracrine, nutritional and neural inputs, which collectively shape the final endocrine output of the islet. Here, we review the principal inputs for each islet-cell type and the physiological circumstances in which these signals arise, through the prism of the insights generated by the transcriptomes of each of the major endocrine-cell types. A comprehensive integration of the factors that influence blood glucose homeostasis is essential to successfully improve therapeutic strategies for better diabetes management
Utilizing osteocyte derived factors to enhance cell viability and osteogenic matrix deposition within IPN hydrogels
Many bone defects arising due to traumatic injury, disease, or surgery are unable to regenerate, requiring intervention. More than four million graft procedures are performed each year to treat these defects making bone the second most commonly transplanted tissue worldwide. However, these types of graft suffer from a limited supply, a second surgical site, donor site morbidity, and pain. Due to the unmet clinical need for new materials to promote skeletal repair, this study aimed to produce novel biomimetic materials to enhance stem/stromal cell osteogenesis and bone repair by recapitulating aspects of the biophysical and biochemical cues found within the bone microenvironment. Utilizing a collagen type I-alginate interpenetrating polymer network we fabricated a material which mirrors the mechanical and structural properties of unmineralized bone, consisting of a porous fibrous matrix with a young's modulus of 64 kPa, both of which have been shown to enhance mesenchymal stromal/stem cell (MSC) osteogenesis. Moreover, by combining this material with biochemical paracrine factors released by statically cultured and mechanically stimulated osteocytes, we further mirrored the biochemical environment of the bone niche, enhancing stromal/stem cell viability, differentiation, and matrix deposition. Therefore, this biomimetic material represents a novel approach to promote skeletal repair
Loss of histone macroH2A1 in hepatocellular carcinoma cells promotes paracrine-mediated chemoresistance and CD4+CD25+FoxP3+ regulatory T cells activation
Rationale: Loss of histone macroH2A1 induces appearance of cancer stem cells (CSCs)-like cells in hepatocellular carcinoma (HCC). How CSCs interact with the tumor microenvironment and the adaptive immune system is unclear. Methods: We screened aggressive human HCC for macroH2A1 and CD44 CSC marker expression. We also knocked down (KD) macroH2A1 in HCC cells, and performed integrated transcriptomic and secretomic analyses. Results: Human HCC showed low macroH2A1 and high CD44 expression compared to control tissues. MacroH2A1 KD CSC-like cells transferred paracrinally their chemoresistant properties to parental HCC cells. MacroH2A1 KD conditioned media transcriptionally reprogrammed parental HCC cells activated regulatory CD4+/CD25+/FoxP3+ T cells (Tregs). Conclusions: Loss of macroH2A1 in HCC cells drives cancer stem-cell propagation and evasion from immune surveillance
A bioprinted cardiac patch composed of cardiac-specific extracellular matrix and progenitor cells for heart repair
Congenital heart defects are present in 8 of 1000 newborns and palliative surgical therapy has increased survival. Despite improved outcomes, many children develop reduced cardiac function and heart failure requiring transplantation. Human cardiac progenitor cell (hCPC) therapy has potential to repair the pediatric myocardium through release of reparative factors, but therapy suffers from limited hCPC retention and functionality. Decellularized cardiac extracellular matrix hydrogel (cECM) improves heart function in animals, and human trials are ongoing. In the present study, a 3D-bioprinted patch containing cECM for delivery of pediatric hCPCs is developed. Cardiac patches are printed with bioinks composed of cECM, hCPCs, and gelatin methacrylate (GelMA). GelMA-cECM bioinks print uniformly with a homogeneous distribution of cECM and hCPCs. hCPCs maintain >75% viability and incorporation of cECM within patches results in a 30-fold increase in cardiogenic gene expression of hCPCs compared to hCPCs grown in pure GelMA patches. Conditioned media from GelMA-cECM patches show increased angiogenic potential (>2-fold) over GelMA alone, as seen by improved endothelial cell tube formation. Finally, patches are retained on rat hearts and show vascularization over 14 d in vivo. This work shows the successful bioprinting and implementation of cECM-hCPC patches for potential use in repairing damaged myocardium
Heterogeneous cancer-associated fibroblast population potentiates neuroendocrine differentiation and castrate resistance in a CD105-dependent manner.
Heterogeneous prostatic carcinoma-associated fibroblasts (CAF) contribute to tumor progression and resistance to androgen signaling deprivation therapy (ADT). CAF subjected to extended passaging, compared to low passage CAF, were found to lose tumor expansion potential and heterogeneity. Cell surface endoglin (CD105), known to be expressed on proliferative endothelia and mesenchymal stem cells, was diminished in high passage CAF. RNA-sequencing revealed SFRP1 to be distinctly expressed by tumor-inductive CAF, which was further demonstrated to occur in a CD105-dependent manner. Moreover, ADT resulted in further expansion of the CD105+ fibroblastic population and downstream SFRP1 in 3-dimensional cultures and patient-derived xenograft tissues. In patients, CD105+ fibroblasts were found to circumscribe epithelia with neuroendocrine differentiation. CAF-derived SFRP1, driven by CD105 signaling, was necessary and sufficient to induce prostate cancer neuroendocrine differentiation in a paracrine manner. A partially humanized CD105 neutralizing antibody, TRC105, inhibited fibroblastic SFRP1 expression and epithelial neuroendocrine differentiation. In a novel synthetic lethality paradigm, we found that simultaneously targeting the epithelia and its microenvironment with ADT and TRC105, respectively, reduced castrate-resistant tumor progression, in a model where either ADT or TRC105 alone had little effect
RhoA GTPase switch controls Cx43-hemichannel activity through the contractile system
ATP-dependent paracrine signaling, mediated via the release of ATP through plasma membrane-embedded hemichannels of the connexin family, coordinates a synchronized response between neighboring cells. Connexin 43 (Cx43) hemichannels that are present in the plasma membrane need to be tightly regulated to ensure cell viability. In monolayers of bovine corneal endothelial cells (BCEC),Cx43-mediated ATP release is strongly inhibited when the cells are treated with inflammatory mediators, in particular thrombin and histamine. In this study we investigated the involvement of RhoA activation in the inhibition of hemichannel-mediated ATP release in BCEC. We found that RhoA activation occurs rapidly and transiently upon thrombin treatment of BCEC. The RhoA activity correlated with the onset of actomyosin contractility that is involved in the inhibition of Cx43 hemichannels. RhoA activation and inhibition of Cx43-hemichannel activity were both prevented by pre-treatment of the cells with C3-toxin as well as knock down of RhoA by siRNA. These findings provide evidence that RhoA activation is a key player in thrombin-induced inhibition of Cx43-hemichannel activity. This study demonstrates that RhoA GTPase activity is involved in the acute inhibition of ATP-dependent paracrine signaling, mediated by Cx43 hemichannels, in response to the inflammatory mediator thrombin. Therefore, RhoA appears to be an important molecular switch that controls Cx43 hemichannel openings and hemichannel-mediated ATP-dependent paracrine intercellular communication under (patho) physiological conditions of stress
The Sonic Hedgehog Pathway Stimulates Prostate Tumor Growth by Paracrine Signaling and Recaptures Embryonic Gene Expression in Tumor Myofibroblasts
The Hedgehog (Hh) pathway contributes to prostate cancer growth and progression. The presence of robust Shh expression in both normal prostate and localized cancer challenged us to explain the unique growth promoting effect in cancer. We show here that paracrine Hh signaling exerts a non-cell autonomous effect on xenograft tumor growth and that Hh pathway activation in myofibroblasts alone is sufficient to stimulate tumor growth. Nine genes regulated by Hh in the mesenchyme of the developing prostate were found to be regulated in the stroma of Hh over-expressing xenograft tumors. Correlation analysis of gene expression in matched specimens of benign and malignant human prostate tissue revealed a partial 5 gene fingerprint of Hh-regulated expression in stroma of all cancers and the complete 9 gene fingerprint in the subset of tumors exhibiting a reactive stroma. No expression fingerprint was observed in benign tissues. We conclude that changes in the prostate stroma due to association with cancer result in an altered transcriptional response to Hh that mimics the growth promoting actions of the fetal mesenchyme. Patients with an abundance of myofibroblasts in biopsy tissue may comprise a sub-group that will exhibit a particularly good response to anti-Hedgehog therapy
The Role of Osteocytes in Targeted Bone Remodeling: A Mathematical Model
Until recently many studies of bone remodeling at the cellular level have
focused on the behavior of mature osteoblasts and osteoclasts, and their
respective precursor cells, with the role of osteocytes and bone lining cells
left largely unexplored. This is particularly true with respect to the
mathematical modeling of bone remodeling. However, there is increasing evidence
that osteocytes play important roles in the cycle of targeted bone remodeling,
in serving as a significant source of RANKL to support osteoclastogenesis, and
in secreting the bone formation inhibitor sclerostin. Moreover, there is also
increasing interest in sclerostin, an osteocyte-secreted bone formation
inhibitor, and its role in regulating local response to changes in the bone
microenvironment. Here we develop a cell population model of bone remodeling
that includes the role of osteocytes, sclerostin, and allows for the
possibility of RANKL expression by osteocyte cell populations. This model
extends and complements many of the existing mathematical models for bone
remodeling but can be used to explore aspects of the process of bone remodeling
that were previously beyond the scope of prior modeling work. Through numerical
simulations we demonstrate that our model can be used to theoretically explore
many of the most recent experimental results for bone remodeling, and can be
utilized to assess the effects of novel bone-targeting agents on the bone
remodeling process
Peripheral and central mechanisms involved in hormonal control of male and female reproduction
Reproduction involves the integration of hormonal signals acting across multiple systems togenerate a synchronized physiological output. A critical component of reproduction is the luteinizinghormone (LH) surge, which is mediated by estradiol (E2) and neuroprogesterone interacting tostimulate kisspeptin release in the rostral periventricular nucleus of the third ventricle in rats. Recentevidence has shown that both classical and membrane E2 and progesterone signaling is involved inthis pathway. A metabolite of gonadotropin-releasing hormone (GnRH), GnRH-(1-5), has been shownto stimulate GnRH expression, secretion, and has a role in the regulation of lordosis. Additionally,gonadotropin-inhibitory hormone (GnIH) projects to and influences the activity of GnRH neurons inbirds. Stress-induced changes in GnIH have been shown to alter breeding behaviors in birds,demonstrating another molecular control of reproduction. Peripherally, paracrine and autocrineactions within the gonad have been suggested as therapeutic targets for infertility in both males andfemales. Dysfunction of testicular prostaglandin synthesis is a possible cause of idiopathic maleinfertility. Indeed, local production of melatonin and corticotropin-releasing hormone (CRH) couldinfluence spermatogenesis via immune pathways in the gonad. In females, vascular endothelialgrowth factor A (VEGF-A) has been implicated in an angiogenic process that mediates developmentof the corpus luteum and thus fertility via the Notch signaling pathway. Age-induced decreases infertility involve ovarian kisspeptin and its regulation of ovarian sympathetic innervation. Finally,morphological changes in the arcuate nucleus of the hypothalamus influence female sexualreceptivity in rats. The processes mediating these morphological changes have been shown toinvolve rapid effects of E2 controlling synaptogenesis in this hypothalamic nucleus. Together, thisreview highlights new research in these areas, focusing on recent findings in the molecularmechanisms of central and peripheral hormonal control of reproduction.Fil: Rudolph, L. M.. University of California at Los Angeles; Estados UnidosFil: Bentley, G. E.. University of California Berkeley; Estados UnidosFil: Calandra, Ricardo Saul. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Paredes, A. H.. Universidad de Chile; ChileFil: Tesone, Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Wu, T. J.. Uniformed Services University; Estados UnidosFil: Micevych, P. E.. University of California at Los Angeles; Estados Unido
- …
