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Abstract

Purpose of Review Microvesicles (MVs) have been

recognised as mediators of stem cell function, enabling and

guiding their regenerative effects.

Recent Findings MVs constitute one unique size class of

extracellular vesicles (EVs) directly shed from the cell

plasma membrane. They facilitate cell-to-cell communi-

cation via intercellular transfer of proteins, mRNA and

microRNA (miRNA). MVs derived from stem cells, or

stem cell regulatory cell types, have proven roles in tissue

regeneration and repair processes. Their role in the main-

tenance of healthy tissue function throughout the life

course and thus in age related health span remains to be

elucidated.

Summary Understanding the biogenesis and mechanisms

of action of MVs may enable the development of cell-free

therapeutics capable of assisting in tissue maintenance and

repair for a variety of age-related degenerative diseases.

This review critically evaluates recent work published in

this area and highlights important new findings demon-

strating the use of MVs in tissue regeneration.

Keywords Microvesicles � extracellular vesicles � Stem
cells � Tissue regeneration � Regenerative medicine �
Ageing

Introduction

A large component of physiological homeostasis has been

attributed to the action of extracellular vesicles (EVs),

which are thought to have a key role in tissue maintenance

and repair. EVs can be defined as all membranous vesicles

that are secreted by cells and that encapsulate bioactive

molecules, including a variety of proteins and nucleic

acids. EVs consist of at least three distinct vesicle groups

characterised by size, shape and point of cellular origin.

These comprise Microvesicles (MVs), exosomes and

apoptotic bodies. MVs vary in size, ranging from 100 to

1000 nm in diameter [1, 2], while exosomes and apoptotic

bodies have a diameter less than 100 nm [1–5]. While MVs

and exosomes are the focus of the majority of biomedical

research, the functions and character of other EVs are less

well understood. EVs can be found in most human bio-

logical fluids and interestingly, have been reported to

contain non-coding RNAs [6–8] and double-stranded DNA

[9]. It has been postulated that EVs provide a means of

intercellular communication both in physiological and

pathological states, by transferring their molecular
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payloads from donor to recipient cells throughout the

human body [8, 10]. This transfer of biologically active

molecules can generate functional changes in the recipient

cells [6] and may also provide a molecular basis for the

spread of allostatic load and the effects of non-cell auton-

omous senescence across the body [11].

A direct sequitur of this hypothesis is that both the

MV class and the exosome class of EVs have been

experimentally shown to significantly assist and improve

the rate of paracrine-mediated tissue damage repair.

Specifically, as part of the repair process, the phenotype

of the recipient cells can be altered by three proposed

mechanisms through interactions with MV-associated

components. Firstly, by translation of the mRNA mole-

cules present in MVs, once endocytosis has taken place

and the mRNAs are located within the recipient cell

cytoplasm. Secondly, by negative regulation of the

recipient cell mRNA molecules by the MV-associated

microRNA (miRNA) regulators. Thirdly, by direct MV-

associated protein activity within the recipient cell.

These will now be discussed with a primary focus on the

contribution of MVs to tissue and organ regeneration and

in comparison to Exosomes.

Microvesicles

MVs were once thought to be cell debris, but recent

research has indicated that they have a proven role in

intercellular communication, stem cell regulation and as

potential therapeutic entities for tissue repair

[10, 12, 13]. They are the product of budding from the

cell membrane and they are shed from almost all cell

types as free spherical vesicles [14]. Consequently, MVs

are found in most biological fluids, such as plasma,

urine, synovial fluid and bronchial lavage fluid [15, 16].

Cells are triggered to generate high quantities of MVs in

response to a variety of stimuli, such as differentiation,

senescence and stress; however, the mechanisms are not

clear [17]. Furthermore, increased intracellular calcium

levels are suggested to enhance MV production, via

phospholipid position changing and flipping of phos-

phatidyl-serine from the inside to the outside of the cell

membrane [15, 17, 18]. Here, it needs to be highlighted

that MVs are different from and should not be confused

with exosomes, which are smaller than MVs in size

(40–100 nm in diameter) [4] and are secreted by cells via

a completely different mechanism that involves fusion of

multivesicular endosomes with the plasma membrane

[15, 19, 20]. MVs must also be distinguished from

apoptotic bodies (1000–4000 nm in diameter) that are

secreted from dying cells during apoptosis [6].

Mode of Action

MVs have been recognized as carriers of protein and

genetic material, such as mRNA, miRNA and other small

non-coding RNAs, that can be secreted from almost all

types of cells and affect the phenotype of recipient cells

[21], either transcriptionally or post-transcriptionally [7].

Interestingly, both MVs and exosomes contain and transfer

a particular set of mRNA and miRNA molecules, some of

which are not present in the cytoplasm of the donor cell,

suggesting that these molecules may have been produced

by the donor cell in order to facilitate intercellular com-

munication and affect the phenotype and processes of

recipient cells [8].

MVs derived from stem cells, or stem cell regulatory

cells, have been consistently shown to play an essential

role in stem cell-mediated repair of tissue damage. While

different types of stem cells have been used in various cell

transplantation therapies, no evidence currently exists to

suggest that any significant number of the adult-derived

stem cells have differentiated and subsequently produced

large populations of organ-specific cells in vivo. Addi-

tionally, it is apparent that the transplantation and subse-

quent action of different stem cell types under specific

tissue damage produces similar outcomes with adminis-

tration of conditioned medium from mesenchymal stem

cells (MSCs) in terms of tissue regeneration [22]. Hence,

these observations, along with findings that demonstrate

the secretion of MV paracrine elements from stem cells and

the presence of MVs in stem cell-conditioned medium,

indicate that stem cells might exert their regenerative

properties through MV-mediated paracrine mechanisms

[22, 23].

Recently, the miRNA signatures for the aforementioned

intercellular communication factors from stem cells and

stem cell regulatory cell types have been investigated as

potential therapeutic agents [24]. Extracellular miRNAs

can be found in MVs in the bloodstream as well as in other

body fluids, and they can be transferred horizontally

between cells [25]. miRNAs typically comprise 22

nucleotide, non-coding RNA molecules that act as negative

regulators of gene expression by suppressing the expres-

sion of genes post-transcriptionally [26]. The donor cell

miRNA molecules bind to complementary sequences in the

coding or 30 untranslated region of the recipient cell

mRNAs and inhibit their translation or promote their

degradation. The donor cell miRNA molecules bind to

complementary sequences in the coding or 30 untranslated
region of the recipient cell mRNAs and inhibit their

translation or promote their degradation. In this way,

miRNAs can silence the translation of mRNA and subse-

quently influence a range of biochemical processes,
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including proliferation, apoptosis and regulation of meta-

bolism. Notably, miRNAs may also function to regulate

cellular differentiation processes and tissue homeostasis.

For instance, terminal differentiation of osteoclasts and

angiogenesis, which is an essential process for organ

growth and repair [27], are regulated by miRNAs [28].

Furthermore, it has been shown that stem cell MVs alone

can promote angiogenesis in vivo in a similar fashion to

stem cell treatment [29]. Moreover, MVs isolated from

embryonic stem cells have been shown to induce repro-

gramming of hematopoietic progenitor cells [30]. Thus,

MVs are excellent candidates for novel therapeutic tools

for tissue regeneration, through angiogenesis, stem cell

differentiation, cell migration and activation of anti-

apoptosis.

Ageing is also believed to be regulated, in part, by

miRNAs, either circulating free or encapsulated in EVs,

such as MVs and exosomes, raising the possibility that age-

related paracrine signalling mechanisms employed by stem

cells may be implicated in processes tightly associated with

age-associated tissue degeneration [26, 31, 32]. Different

expression levels of several miRNAs have been found with

age in a variety of species, from human to worm, where

upregulation of specific miRNAs induces cell senescence

with ageing. Moreover, miRNAs enclosed in MVs and

exosomes have been shown to play a role in a number of

age-related diseases, such as atherosclerosis, osteoporosis,

Alzheimer’s disease and type 2 diabetes mellitus [33].

Consequently, paracrine signalling mechanisms may be

implicated in processes tightly associated with age related

tissue maintenance and damage repair. Consequently, MVs

also have the potential to become a cell-free therapeutic

agent for treating age-related degenerative diseases, as well

as for achieving an increase in healthy lifespan through the

mitigation of the drivers of age-related loss of physiolog-

ical function. This approach also has the important addi-

tional bonus of providing a therapeutic vehicle that avoids

the ethical complications and technical hurdles that are still

associated with stem cell transplantation therapies [34, 35].

However, scientific breakthroughs in this area of research

are essential so as to produce more data and advance our

knowledge in order to make MV therapies a reality.

The above-mentioned observations have added a new

dimension in the research on MVs, stem cells and regen-

erative medicine. Hence, MVs may provide a novel means

for the development of prospective strategies of cell-free

regenerative therapies ultimately aiming to tackle other-

wise intractable pathologies, improve age-related health

span and mitigate the effects of degenerative diseases by

tissue regeneration [36].

The first step towards exemplifying the use of MVs as a

cell-free therapeutic for the treatment of tissue and organ

damage have now begun [24, 37]. One recent

exemplification has been the use of rat MVs to regenerate

damaged pancreata in mice.

Pancreas Recovery and Protection Against Kidney
Damage

Pathfinder cells (PCs) are a putative stem cell regulatory

cell type that has been demonstrated to enable tissue

regeneration in two models of solid organ damage

(kidneys and pancreas), working across both concordant

and discordant xenotransplantation barriers in vivo. PCs

have demonstrated the ability to stimulate regeneration

following acute ischaemic renal damage [38] and to

completely reverse the effects of streptozotocin (SZT)-

induced diabetes in mice [39]. In both instances, the

mode of action of the PCs, independently of the species

of origin, was paracrine in nature, suggesting that PC-

derived MVs and their cargo could play a key role in

regulating organ repair.

A recent study by McGuinness et al. has elegantly

demonstrated that MVs derived from rat PCs could stim-

ulate functional recovery of pancreata in mice with SZT-

induced diabetes, exactly as PCs themselves. In addition,

this study highlighted that only the PC MV class and not

PC exosomes could stimulate functional recovery of the

pancreas in vivo [40•]. This, to the best of our knowledge,

is the first time that a direct functional comparison has been

made between the regenerative capacity of MVs and exo-

somes in an in vivo model. This observation suggests that

MVs from other cell types may also be superior to exo-

somes in enabling tissue regeneration in vivo.

MVs derived from adult human MSCs have also been

demonstrated to be protective against renal damage fol-

lowing glycerol-induced, ischemia–reperfusion and cis-

platin-induced acute kidney injury via horizontal transfer

of mRNA and miRNA molecules [41–43]. Several other

studies have also indicated that MSC MVs can reverse

acute and chronic kidney injury in a variety of experi-

mental models, via inhibition of apoptosis and stimulation

of proliferation [44, 45].

However, MSC exosomes have not been shown to be

capable of assisting tissue regeneration and inducing pos-

itive effects in in vivo models of pancreatic and/or renal

damage. Interestingly though, it is worth highlighting that

MSC exosomes have been previously observed to assist

wound healing in vitro [46]. In other words, it appears that

the regenerative effect of exosomes, either of MSC or PC

origin, is limited to in vitro models as far as pancreas and

kidney damage are concerned. Hence, the factors under-

lying variation in the regenerative efficacy of exosomes

between in vitro and in vivo pancreatic and renal studies

are worth addressing in future research. Thus, it becomes
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apparent that it is vitally important to both explore and

recognise the differences between these two types of EVs.

Understanding the differences between MVs and exosomes

in processes such as biogenesis and interaction with

recipient cells, as well as mode of action, both in vitro and

in vivo, could prove to be vital in devising therapeutic

strategies with highly potential outcomes in the near future.

Finally, endothelial progenitor cells have been used as a

source of MVs with potential therapeutic and protective

properties. These MVs have been shown to protect against

kidney damage following ischemia–reperfusion in rats,

through a mechanism involving miRNA delivery to resi-

dent renal cells [47]. Nevertheless, it is clear that more

studies are needed in order to fully assess the efficacy and

complete mode of action of MVs in pancreas and renal

repair before their translation into human therapies [48].

Cardiac Regeneration

MVs have also been suggested as potential therapeutic

effectors in cardiac regeneration. For the first time, MVs

derived from human-induced pluripotent stem cells (iPSCs)

were shown to transmit proteins and RNAs to cardiac

MSCs in vitro, affecting their transcriptome and proteome

and enhancing their cardiac and endothelial differentiation

potential [49•]. Paracrine factors derived from these iPSCs

were later isolated and used in an in vivo setting in which

mice were exposed to acute myocardial ischemia/reperfu-

sion injury. The results suggested that both the MVs and

exosomes from the iPSCs were able to transfer miRNAs to

the ischemic myocardium and protect the cardiomyocytes

through the inhibition of apoptosis [50]. Moreover, a study

by Feng et al. showed that the MSC paracrine factors are

involved in the protection of ischemic cardiomyocytes by

transmission of a specific miRNA, miR-22, leading to

reduced apoptosis. This observation was validated in MSCs

and neonatal cardiomyocytes co-cultures in vitro, and

in vivo using a myocardial infarction mouse model [51].

While more future in vivo studies are warranted in order to

prove this concept, these findings described above open the

way for the potential development of safe acellular thera-

peutic applications, avoiding the challenges, both ethical

and technical, of pluripotent stem cell transplantation

therapies [35], not only for cardiac regeneration but also

for the repair of other tissues.

Retinal Regeneration

The therapeutic potential of MVs has also been investi-

gated in the context of retinal regeneration. MVs were

isolated from mouse embryonic stem cells, and their

capability to affect Müller cells (a type of quiescent retinal

glial cell) and alter them into a more permissive state for

regeneration of damaged retina was investigated. It was

subsequently shown that MVs were capable of transferring

mRNAs and miRNAs to cultured Müller cells, enabling

them to re-enter the cell cycle by induction of pluripotency.

This was then followed by differentiation into cells of

retinal lineage [52•]. The same group has on-going studies

testing the therapeutic effect of MVs in vivo, in mice with

damaged retinas, and the outcomes would be of great

interest for establishing novel applications of MVs in tissue

regeneration.

Treatment of Lung Injury

MSCs have previously been discussed as an attractive

therapeutic approach for the treatment of acute lung injury

(ALI) and acute respiratory distress syndrome (ARDS). In

addition, emphasis has been given to the potential role of

the paracrine factors that these cells secrete [53, 54].

Similarly, MSCs have been used as a therapeutic approach

for combating developmental lung injury and lung vascular

diseases [55]. The significance of paracrine factors in the

treatment of the above disorders was later highlighted

in vitro by restoring sodium transport and preserving

epithelial permeability in an ALI model of rat alveolar

epithelial cells, after addition of MSC-conditioned media,

which included EV paracrine factors, such as MVs and

exosomes [56]. Previously, exosomes derived from bone

marrow MSCs have been shown to provide a protective

effect during hypoxia-induced pulmonary hypertension.

This protective effect was mitigated by suppression of

hyper-proliferative pathways, such as the STAT3-mediated

signalling pathway, induced by hypoxia [57]. More

recently, MVs have been shown to have a significant

therapeutic potential in treating ALI and ARDS in vivo, in

mice that had endotoxin-induced ALI with Escherichia coli

infection. The MVs that were used for this purpose were

derived from human MSCs of bone marrow origin. These

MVs were shown to have a positive therapeutic effect and

mitigate the effects of ALI in mice [58].

Nervous System Repair Therapies

MVs have also been discussed as critical to a variety of

events in the nervous system. Interestingly, they could both

provide protection from neurodegeneration and have a

central role in the propagation of neurotoxicity [59]. Exo-

somes have been implicated in spreading the key disease

molecules of Parkinson’s and Alzheimer’s diseases through

the brain [60], and MVs may also play a part in this
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important disease process. As far as their protective action

is concerned, MSC-based therapies applied in numerous

models of neurodegenerative disorders have provided

strong evidence of paracrine regeneration effects [61]. Xin

et al. demonstrated that exosome paracrine factors origi-

nating from MSCs can have a positive effect on neural cells

after experimentally induced stroke in rodents, by the

transfer of the miR-133b miRNA [62–64]. More recently,

another group showed both in vitro and in vivo that MVs

isolated from macrophages, which have been highly asso-

ciated with regeneration of peripheral nerves, stimulated

proliferation and migration of Schwann cells [65•]. Sch-

wann cells are cells of the peripheral nervous system that

contribute to axonal regeneration after nerve injury. These

results provide a novel strategy for the development of

nervous system repair therapeutics with the use of either

MVs or exosomes. Nevertheless, the potential of EVs to

transfer toxic molecules, as may occur in nervous system

diseases, should be taken into consideration and thoroughly

investigated, before safe and efficient therapies can be

devised for the repair of nerve damage.

Conclusions

Overall, robust evidence exists to support the premise that

MVs are capable of horizontally transferring proteins,

mRNA and miRNA from donor to recipient cells and

subsequently affecting their phenotype [6, 8, 30]. MVs can

stimulate functional changes in the recipient cells by three

proposed mechanisms; protein action, mRNA translation

and negative post-transcriptional regulation of gene

expression facilitated by miRNA action. These phenotypic

changes conferred by MVs through paracrine mechanisms

allow for stem cell regulation and therapeutic efficacy

during tissue regeneration via anti-apoptosis and enhanced

angiogenesis.

The potential of MVs to develop effective therapeutic

interventions in the near future has been demonstrated

numerous times over the past few years, and their role in

tissue regeneration through the horizontal transfer of

bioactive molecules in intercellular communication has

become widely accepted. Additionally, genetic engineering

may be used to modify MV-producing cells to give rise to

higher quantities of MVs with enhanced tissue regeneration

efficiency in vivo, based on the presence and possibly

quantity of their paracrine effectors, such as miRNAs.

Alternatively, production of synthetic MVs that carry the

required bioactive apparatus necessary to facilitate the

transfer of damage repair signals could be deployed, for the

treatment of tissue impairment in degenerative diseases or

tissue decay that comes with ageing.

MVs are in clinical trials and/or moving into clinical

trials on a number of fronts [66]. However, for safe and

successful clinical applications to be developed, more

research is essential into the field of MVs, so as to fur-

ther understand their biogenesis, transport and biological

mode of action. It is also important to identify all the

bioactive species that are found within MVs and under-

stand how they change depending on the donor cells and

what their exact mechanism of action is once they con-

tact the recipient cells. Moreover, it would be of sig-

nificant interest to understand how the production of

MVs, their interaction with target cells and/or their

payload changes with age. In other words, it is important

that MVs remain therapeutically efficient and safe for

use in tissue regeneration with ageing, as ageing is a

major risk factor for many degenerative diseases, apart

from the tissue decay that is its physiological outcome.

Also, it is worth exploring the possibility that MVs and

other EVs, such as exosomes, act as vehicles for

spreading age-related allostatic load within the body.

Additionally, it is of vital importance to become able to

exploit their regenerative and anti-apoptotic properties

more accurately and efficiently for different organs,

tissues and cell types. In order to do so, it is important to

develop large scale MV production, as well as isolation

and purification methods. Also it is essential that tech-

nologies are developed that are capable of efficiently

separating MVs from apoptotic bodies and investigate

what cell populations and which cargoes are suitable for

devising different therapeutic strategies. Finally, it is

necessary to provide guidance on various important

ethical, technical, legal and regulatory issues that could

potentially arise, concerning the use of MVs as a thera-

peutic intervention for tissue damage, degenerative dis-

eases and ageing.
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