94 research outputs found

    Polyelectrolyte gels: fundamentals, fabrication and applications

    Get PDF
    Polyelectrolyte gels are an important class of polymer gels and a versatile platform with charged polymer networks with ionisable groups. They have drawn significant recent attention as a class of smart material and have demonstrated potential for a variety of applications. This review begins with the fundamentals of polyelectrolyte gels, which encompass various classifications (i.e., origin, charge, shape) and crucial aspects (ionic conductivity and stimuli responsiveness). It further centralises recent developments of polyelectrolyte gels, emphasising their synthesis, structure–property relationships and responsive properties. Sequentially, this review demonstrates how polyelectrolyte gels’ flourishing properties create attractiveness to a range of applications including tissue engineering, drug delivery, actuators and bioelectronics. Finally, the review outlines the indisputable appeal, further improvements and emerging trends in polyelectrolyte gelsNisal Wanasingha, Pramod Dorishetty, Naba K. Dutta and Namita Roy Choudhur

    Molecular Modeling of Tethered Polyelectrolytes for Novel Biomedical Applications

    Get PDF
    Current research trends throughout the world focus on designing intelligent materi- als and systems for diverse applications in all courses of life. Biomaterials research encompasses a major part in this revolution due to the increased effort in fulfilling unmet medical needs to treat complex physiological and neurodegenerative disorders. Polymers play inevitable roles in these research endeavors for their ubiquitous pres- ence in biological systems. Therefore, it is crucial to understand how the polymeric molecules interact within diverse biological environments, to efficiently engineer them for various drug delivery and biosensing systems. The use of experimental design and selection of different polymers for diverse applications alone is an arduous task. Hence, theoretical studies on these biological systems become important starting points for projects that have previously been only studied with experimental techniques. Using theory can make the job easier for researchers in biomedical engineering by both coa- lescing large bodies of experimental data into conceptual frameworks and narrowing down a parameter search space. Along this line, our research focuses on theoretical molecular level modeling of complex polymeric molecules, both biological and synthetic, for drug delivery and biosensing applications. The objective is to design new polymeric systems based on their structural, thermodynamic and physicochemical properties to help enhance the experimental design. This research work uses a Self Consistent Field Theory (SCFT) based approach for different applications involving polymers, that are teth- ered and electrolytic in nature. The molecular theory studies the thermodynamic and structural behavior of the polymers as a function of their molecular composition and physicochemical environments. This theory is able to perform systematic thermody- namic calculations at low computational cost, while including a detailed molecular description of the molecules in the system. The competition of all relevant molecu- lar interactions, such as electrostatics, van der Waals, thermodynamic and chemical equilibrium is described in this model. The first study involves elucidating the behavior of ssDNA aptamers in different biological environments. Our study suggests that the structure of the aptamer chains varies significantly due to charge regulation effects, in response to changes in salt concentration, types and ionic strength of salt and density of the aptamer brush. The understanding gained from this study can help to facilitate aptamer selection process against specific target molecules. Our second study inquires the property changes of ssDNA aptamers in presence of divalent metal cations and quantifies the number of metal ions bound to the ap- tamer chains. The results imply that the ion cloud around the oligomers is uniformly distributed in different sequences and reinforces the dominance of non-specific elec- trostatic attraction between the nucleobases and the cations as the driving force for cation-binding. Our results also show that the ionic strength has a more prominent effect on the structure and properties of the oligomer brushes when they are densely grafted, compared to their sparsely grafted counterparts. In its current state, this model can serve as a foundation for field theoric studies of more complex systems to dissect the ion binding scenario around aptamers and single stranded nucleic acids. The third study in this dissertation analyses the behavior of a pH responsive polymer (PMAA), complexed with a small molecule drug (PD166793), and grafted to a nanoparticle surface, to design a controlled and sustained drug delivery system for enhanced cardiovascular repair. The molecular theory results elucidate the reasons for why the polymer shows poor drug binding at physiological pH and higher drug binding at acidic pH. Based on these findings, we present a proof of concept of how the molecular level understanding of this system can be leveraged to increase drug binding at physiological pH by adding a strong polyelectrolyte to the system. This study can aid in designing new drug delivery systems with improved efficacy and sustainability, not only for cardiovascular diseases, but also for other critical and time-sensitive diseases

    CHITOSAN: A MULTIFACET POLYMER

    Get PDF
    Objective: Chitosan is considerably versatile and promising biomaterial. It is a natural, tough, cationic, nontoxic, biodegradable, and biocompatible polymer obtained by alkaline deacetylation of chitin. Chitin is a polysaccharide obtained from exoskeletons of crustaceans and sea insects such as crab, krill, shrimp and crawfish etc. Besides the formerly mentioned resources it is also obtained from some fungi and bacterial cell walls. Methods: Chitosan has found wide applicability in conventional pharmaceutical devices as a potential formulation excipient, some of which include binding, disintegrating, stabilizing, suspending, tablet coating, and film forming material. Chitosan has been comprehensively investigated for its suitability for its controlled release characteristics in various studies. Chitosan presents remarkable absorption and penetration enhancing properties that makes it a good candidate for the delivery of genes and peptide. Results: It is possessing tremendous mucoadhesive and inherent anti-microbial properties, so that it can be used as a carrier for novel drug delivery. In addition to the above mentioned reasons, tailoring the controlled release and to improve the therapeutic efficacy of the low molecular weight drug compounds can also be achieved by this polymer and moreover in combination with various polymers is feasible due its compatibility i.e. low chemical reactivity. Conclusion: This brief editorial epitomizes the potential application of chitosan in the development of drug delivery systems

    Some excursions in the world of stimuli-responsive polymeric gels

    Get PDF
    Stimuli-responsive polymeric gels are attracting increasing attention due to their great potential as smart materials. Some of the recent work in the area of science and applications of these materials, including from our own school at NCL, is described. The quantitative basis for volume transltion in the gels is first presented. Our recent findlugs on deformation-dependent swelling as well as certain aspects of microdynamics in gels studied through NMR have been highlighted. Specific appilcatlons based on this fundamental understandmg have been described. These include the development of a macromolecular separation technique based on swelling/collaping gels. The basis for diffusion modulation of gels to switch from Fickian to non-Fickian dlifusion has been presented. A practical application of such diffusion modulation in sustained-release ystrms is described. Diverse applications exploiting the stimuli-responsive ability of gels in areas such as sensors, soft actuators, artificial muscles, intelligent sponges, etc., are finally presented

    Hydrogel-based logic circuits for planar microfluidics and lab-on-a-chip automation

    Get PDF
    The transport of vital nutrient supply in fluids as well as the exchange of specific chemical signals from cell to cell has been optimized over billion years of natural evolution. This model from nature is a driving factor in the field of microfluidics, which investigates the manipulation of the smallest amounts of fluid with the aim of applying these effects in fluidic microsystems for technical solutions. Currently, microfluidic systems are receiving attention, especially in diagnostics, \textit{e.g.} as SARS-CoV-2 antigen tests, or in the field of high-throughput analysis, \textit{e.g.} for cancer research. Either simple-to-use or large-scale integrated microfluidic systems that perform biological and chemical laboratory investigations on a so called Lab-on-a-Chip (LoC) provide fast analysis, high functionality, outstanding reproducibility at low cost per sample, and small demand of reagents due to system miniaturization. Despite the great progress of different LoC technology platforms in the last 30 years, there is still a lack of standardized microfluidic components, as well as a high-performance, fully integrated on-chip automation. Quite promising for the microfluidic system design is the similarity of the Kirchhoff's laws from electronics to predict pressure and flow rate in microchannel structures. One specific LoC platform technology approach controls fluids by active polymers which respond to specific physical and chemical signals in the fluid. Analogue to (micro-)electronics, these active polymer materials can be realized by various photolithographic and micro patterning methods to generate functional elements at high scalability. The so called chemofluidic circuits have a high-functional potential and provide “real” on-chip automation, but are complex in system design. In this work, an advanced circuit concept for the planar microfluidic chip architecture, originating from the early era of the semiconductor-based resistor-transistor-logic (RTL) will be presented. Beginning with the state of the art of microfluidic technologies, materials, and methods of this work will be further described. Then the preferred fabrication technology is evaluated and various microfluidic components are discussed in function and design. The most important component to be characterized is the hydrogel-based chemical volume phase transition transistor (CVPT) which is the key to approach microfluidic logic gate operations. This circuit concept (CVPT-RTL) is robust and simple in design, feasible with common materials and manufacturing techniques. Finally, application scenarios for the CVPT-RTL concept are presented and further development recommendations are proposed.:1 The transistor: invention of the 20th century 2 Introduction to fluidic microsystems and the theoretical basics 2.1 Fluidic systems at the microscale 2.2 Overview of microfluidic chip fabrication 2.2.1 Common substrate materials for fluidic microsystems 2.2.2 Structuring polymer substrates for microfluidics 2.2.3 Polymer chip bonding technologies 2.3 Fundamentals and microfluidic transport processes 2.3.1 Fluid dynamics in miniaturized systems 2.3.2 Hagen-Poiseuille law: the fluidic resistance 2.3.3 Electronic and microfluidic circuit model analogy 2.3.4 Limits of the electro-fluidic analogy 2.4 Active components for microfluidic control 2.4.1 Fluid transport by integrated micropumps 2.4.2 Controlling fluids by on-chip microvalves 2.4.3 Hydrogel-based microvalve archetypes 2.5 LoC technologies: lost in translation? 2.6 Microfluidic platforms providing logic operations 2.6.1 Hybrids: MEMS-based logic concepts 2.6.2 Intrinsic logic operators for microfluidic circuits 2.7 Research objective: microfluidic hydrogel-based logic circuits 3 Stimuli-responsive polymers for microfluidics 3.1 Introduction to hydrogels 3.1.1 Application variety of hydrogels 3.1.2 Hydrogel microstructuring methods 3.2 Theory: stimuli-responsive hydrogels 3.3 PNIPAAm: a multi-responsive hydrogel 4 Design, production and characterization methods of hydrogel-based microfluidic systems 4.1 The semi-automated computer aided design approach for microfluidic systems 4.2 The applied design process 4.3 Fabrication of microfluidic chips 4.3.1 Photoresist master fabrication 4.3.2 Soft lithography for PDMS chip production 4.3.3 Assembling PDMS chips by plasma bonding 4.4 Integration of functional hydrogels in microfluidic chips 4.4.1 Preparation of a monomer solution for hydrogel synthesis 4.4.2 Integration methods 4.5 Effects on hydrogel photopolymerization and the role of integration method 4.5.1 Photopolymerization from monomer solutions: managing the diffusion of free radicals 4.5.2 Hydrogel adhesion and UV light intensity distribution in the polymerization chamber 4.5.3 Hydrogel shrinkage behavior of different adhesion types 4.6 Comparison of the integration methods 4.7 Characterization setups for hydrogel actuators and microfluidic measurements . 71 4.7.1 Optical characterization method to describe swelling behavior 4.7.2 Setup of a microfluidic test stand 4.8 Conclusion: design, production and characterization methods 5 VLSI technology for hydrogel-based microfluidics 5.1 Overview of photolithography methods 5.2 Standard UV photolithography system for microfluidic structures 5.3 Self-made UV lithography system suitable for the mVLSI 5.3.1 Lithography setup for the DFR and SU-8 master exposure 5.3.2 Comparison of mask-based UV induced crosslinking for DFR and SU-8 5.4 Mask-based UV photopolymerization for mVLSI hydrogel patterning 5.4.1 Lithography setup for the photopolymerization of hydrogels 5.4.2 Hydrogel photopolymerization: experiments and results 5.4.3 Troubleshooting: photopolymerization of hydrogels 5.5 Conclusion: mVLSI technologies for hydrogel-based LoCs 6 Components for chemofluidic circuit design 6.1 Passive components in microfluidics 6.1.1 Microfluidic resistor 6.1.2 Planar-passive microfluidic signal mixer 6.1.3 Phase separation: laminar flow signal splitter 6.1.4 Hydrogel-based microfluidic one-directional valves 6.2 Hydrogel-based active components 6.2.1 Reversible hydrogel-based valves 6.2.2 Hydrogel-based variable resistors 6.2.3 CVPT: the microfluidic transistor 6.3 Conclusion: components for chemofluidic circuits 7 Hydrogel-based logic circuits in planar microfluidics 7.1 Development of a planar CVPT logic concept 7.1.1 Challenges of planar microfluidics 7.1.2 Preparatory work and conceptional basis 7.2 The microfluidic CVPT-RTL concept 7.3 The CVPT-RTL NAND gate 7.3.1 Circuit optimization stabilizing the NAND operating mode 7.3.2 Role of laminar flow for the CVPT-RTL concept 7.3.3 Hydrogel-based components for improved switching reliability 7.4 One design fits all: the NOR, AND and OR gate 7.5 Control measures for cascaded systems 7.6 Application scenarios for the CVPT-RTL concept 7.6.1 Use case: automated cell growth system 7.6.2 Use case: chemofluidic converter 7.7 Conclusion: Hydrogel-based logic circuits 8 Summary and outlook 8.1 Scientific achievements 8.2 Summarized recommendations from this work Supplementary information SI.1 Swelling degree of BIS-pNIPAAm gels SI.2 Simulated ray tracing of UV lithography setup by WinLens® SI.3 Determination of the resolution using the intercept theorem SI.4 Microfluidic master mold test structures SI.4.1 Polymer and glass mask comparison SI.4.2 Resolution Siemens star in DFR SI.4.3 Resolution Siemens star in SU-8 SI.4.4 Integration test array 300 μm for DFR and SU-8 SI.4.5 Integration test array 100 μm for SU-8 SI.4.6 Microfluidic structure for different technology parameters SI.5 Microfluidic test setups SI.6 Supplementary information: microfluidic components SI.6.1 Compensation methods for flow stabilization in microfluidic chips SI.6.2 Planar-passive microfluidic signal mixer SI.6.3 Laminar flow signal splitter SI.6.4 Variable fluidic resistors: flow rate characteristics SI.6.5 CVPT flow rate characteristics for high Rout Standard operation proceduresDer Transport von lebenswichtigen Nährstoffen in Flüssigkeiten sowie der Austausch spezifischer chemischer Signale von Zelle zu Zelle wurde in Milliarden Jahren natürlicher Evolution optimiert. Dieses Vorbild aus der Natur ist ein treibender Faktor im Fachgebiet der Mikrofluidik, welches die Manipulation kleinster Flüssigkeitsmengen erforscht um diese Effekte in fluidischen Mikrosystemen für technische Lösungen zu nutzen. Derzeit finden mikrofluidische Systeme vor allem in der Diagnostik, z.B. wie SARS-CoV-2-Antigentests, oder im Bereich der Hochdurchsatzanalyse, z.B. in der Krebsforschung, besondere Beachtung. Entweder einfach zu bedienende oder hochintegrierte mikrofluidische Systeme, die biologische und chemische Laboruntersuchungen auf einem sogenannten Lab-on-a-Chip (LoC) durchführen, bieten schnelle Analysen, hohe Funktionalität, hervorragende Reproduzierbarkeit bei niedrigen Kosten pro Probe und einen geringen Bedarf an Reagenzien durch die Miniaturisierung des Systems. Trotz des großen Fortschritts verschiedener LoC-Technologieplattformen in den letzten 30 Jahren mangelt es noch an standardisierten mikrofluidischen Komponenten sowie an einer leistungsstarken, vollintegrierten On-Chip-Automatisierung. Vielversprechend für das Design mikrofluidischer Systeme ist die Ähnlichkeit der Kirchhoff'schen Gesetze aus der Elektronik zur Vorhersage von Druck und Flussrate in Mikrokanalstrukturen. Ein spezifischer Ansatz der LoC-Plattformtechnologie steuert Flüssigkeiten durch aktive Polymere, die auf spezifische physikalische und chemische Signale in der Flüssigkeit reagieren. Analog zur (Mikro-)Elektronik können diese aktiven Polymermaterialien durch verschiedene fotolithografische und mikrostrukturelle Methoden realisiert werden, um funktionelle Elemente mit hoher Skalierbarkeit zu erzeugen.\\ Die sogenannten chemofluidischen Schaltungen haben ein hohes funktionales Potenzial und ermöglichen eine 'wirkliche' on-chip Automatisierung, sind jedoch komplex im Systemdesign. In dieser Arbeit wird ein fortgeschrittenes Schaltungskonzept für eine planare mikrofluidische Chiparchitektur vorgestellt, das aus der frühen Ära der halbleiterbasierten Resistor-Transistor-Logik (RTL) hervorgeht. Beginnend mit dem Stand der Technik der mikrofluidischen Technologien, werden Materialien und Methoden dieser Arbeit näher beschrieben. Daraufhin wird die bevorzugte Herstellungstechnologie bewertet und verschiedene mikrofluidische Komponenten werden in Funktion und Design diskutiert. Die wichtigste Komponente, die es zu charakterisieren gilt, ist der auf Hydrogel basierende chemische Volumen-Phasenübergangstransistor (CVPT), der den Schlüssel zur Realisierung mikrofluidische Logikgatteroperationen darstellt. Dieses Schaltungskonzept (CVPT-RTL) ist robust und einfach im Design und kann mit gängigen Materialien und Fertigungstechniken realisiert werden. Zuletzt werden Anwendungsszenarien für das CVPT-RTL-Konzept vorgestellt und Empfehlungen für die fortlaufende Entwicklung angestellt.:1 The transistor: invention of the 20th century 2 Introduction to fluidic microsystems and the theoretical basics 2.1 Fluidic systems at the microscale 2.2 Overview of microfluidic chip fabrication 2.2.1 Common substrate materials for fluidic microsystems 2.2.2 Structuring polymer substrates for microfluidics 2.2.3 Polymer chip bonding technologies 2.3 Fundamentals and microfluidic transport processes 2.3.1 Fluid dynamics in miniaturized systems 2.3.2 Hagen-Poiseuille law: the fluidic resistance 2.3.3 Electronic and microfluidic circuit model analogy 2.3.4 Limits of the electro-fluidic analogy 2.4 Active components for microfluidic control 2.4.1 Fluid transport by integrated micropumps 2.4.2 Controlling fluids by on-chip microvalves 2.4.3 Hydrogel-based microvalve archetypes 2.5 LoC technologies: lost in translation? 2.6 Microfluidic platforms providing logic operations 2.6.1 Hybrids: MEMS-based logic concepts 2.6.2 Intrinsic logic operators for microfluidic circuits 2.7 Research objective: microfluidic hydrogel-based logic circuits 3 Stimuli-responsive polymers for microfluidics 3.1 Introduction to hydrogels 3.1.1 Application variety of hydrogels 3.1.2 Hydrogel microstructuring methods 3.2 Theory: stimuli-responsive hydrogels 3.3 PNIPAAm: a multi-responsive hydrogel 4 Design, production and characterization methods of hydrogel-based microfluidic systems 4.1 The semi-automated computer aided design approach for microfluidic systems 4.2 The applied design process 4.3 Fabrication of microfluidic chips 4.3.1 Photoresist master fabrication 4.3.2 Soft lithography for PDMS chip production 4.3.3 Assembling PDMS chips by plasma bonding 4.4 Integration of functional hydrogels in microfluidic chips 4.4.1 Preparation of a monomer solution for hydrogel synthesis 4.4.2 Integration methods 4.5 Effects on hydrogel photopolymerization and the role of integration method 4.5.1 Photopolymerization from monomer solutions: managing the diffusion of free radicals 4.5.2 Hydrogel adhesion and UV light intensity distribution in the polymerization chamber 4.5.3 Hydrogel shrinkage behavior of different adhesion types 4.6 Comparison of the integration methods 4.7 Characterization setups for hydrogel actuators and microfluidic measurements . 71 4.7.1 Optical characterization method to describe swelling behavior 4.7.2 Setup of a microfluidic test stand 4.8 Conclusion: design, production and characterization methods 5 VLSI technology for hydrogel-based microfluidics 5.1 Overview of photolithography methods 5.2 Standard UV photolithography system for microfluidic structures 5.3 Self-made UV lithography system suitable for the mVLSI 5.3.1 Lithography setup for the DFR and SU-8 master exposure 5.3.2 Comparison of mask-based UV induced crosslinking for DFR and SU-8 5.4 Mask-based UV photopolymerization for mVLSI hydrogel patterning 5.4.1 Lithography setup for the photopolymerization of hydrogels 5.4.2 Hydrogel photopolymerization: experiments and results 5.4.3 Troubleshooting: photopolymerization of hydrogels 5.5 Conclusion: mVLSI technologies for hydrogel-based LoCs 6 Components for chemofluidic circuit design 6.1 Passive components in microfluidics 6.1.1 Microfluidic resistor 6.1.2 Planar-passive microfluidic signal mixer 6.1.3 Phase separation: laminar flow signal splitter 6.1.4 Hydrogel-based microfluidic one-directional valves 6.2 Hydrogel-based active components 6.2.1 Reversible hydrogel-based valves 6.2.2 Hydrogel-based variable resistors 6.2.3 CVPT: the microfluidic transistor 6.3 Conclusion: components for chemofluidic circuits 7 Hydrogel-based logic circuits in planar microfluidics 7.1 Development of a planar CVPT logic concept 7.1.1 Challenges of planar microfluidics 7.1.2 Preparatory work and conceptional basis 7.2 The microfluidic CVPT-RTL concept 7.3 The CVPT-RTL NAND gate 7.3.1 Circuit optimization stabilizing the NAND operating mode 7.3.2 Role of laminar flow for the CVPT-RTL concept 7.3.3 Hydrogel-based components for improved switching reliability 7.4 One design fits all: the NOR, AND and OR gate 7.5 Control measures for cascaded systems 7.6 Application scenarios for the CVPT-RTL concept 7.6.1 Use case: automated cell growth system 7.6.2 Use case: chemofluidic converter 7.7 Conclusion: Hydrogel-based logic circuits 8 Summary and outlook 8.1 Scientific achievements 8.2 Summarized recommendations from this work Supplementary information SI.1 Swelling degree of BIS-pNIPAAm gels SI.2 Simulated ray tracing of UV lithography setup by WinLens® SI.3 Determination of the resolution using the intercept theorem SI.4 Microfluidic master mold test structures SI.4.1 Polymer and glass mask comparison SI.4.2 Resolution Siemens star in DFR SI.4.3 Resolution Siemens star in SU-8 SI.4.4 Integration test array 300 μm for DFR and SU-8 SI.4.5 Integration test array 100 μm for SU-8 SI.4.6 Microfluidic structure for different technology parameters SI.5 Microfluidic test setups SI.6 Supplementary information: microfluidic components SI.6.1 Compensation methods for flow stabilization in microfluidic chips SI.6.2 Planar-passive microfluidic signal mixer SI.6.3 Laminar flow signal splitter SI.6.4 Variable fluidic resistors: flow rate characteristics SI.6.5 CVPT flow rate characteristics for high Rout Standard operation procedure

    Structure, properties, forming, and applications of alginate fibers: A review

    Get PDF
    Alginate has gained extensive attention due to its versatile properties and numerous applications in different fields. Due to the abundant availability of raw alginate in nature and its advantage of being easily recycled, alginate-based materials are conducive to advancing the shift away from an economy dependent on fossil fuels to a more environmentally friendly and sustainable one. In addition, its inherent biocompatibility makes alginate a fascinating biomedical material. This comprehensive review presents a detailed analysis of alginate, focusing on its structural characteristics, physicochemical and biological properties, current processing technologies, and modification strategies. This review explores the diverse applications of alginate-based materials in biomedicine and healthcare, considering drug delivery systems, tissue engineering, and wound dressings. Additionally, this review looks into the environmental applications of alginate in biosensors and waste-water treatment. The challenges associated with alginate utilization and future perspectives for research and development are also presented. This review provides a comprehensive overview of alginate, offering valuable insights into its properties, applications, and potential for future applications across various industries

    Tailoring Thermoresponsive Poly(N-Isopropylacrylamide) Toward Sensing Perfluoroalkyl Acids

    Get PDF
    Widespread distribution of poly- and perfluoroalkyl substances (PFAS) in the environment combined with concerns for their potentially negative health effects has motivated regulators to establish strict standards for their surveillance. The United States Environmental Protection Agency issued a cumulative domestic threshold of 70 ppt for water supplies, and this bar is even lower in some local districts and other countries. Monitoring PFAS consequently requires sensitive analytical equipment to meet regulatory specifications, and liquid chromatography with tandem mass spectroscopy (LC/MS/MS) is the most common technique used to satisfy these requirements. Though extremely sensitive, the instrument is often burdened by pretreatment regimens, sedentation, and user proficiency barriers that encumber or limit its effectiveness. As an alternative, polymeric strategies for detecting PFAS are promising candidates for funneling recognition, transduction, and receptor elements into a single sensing platform to overcome some of the hurdles affecting LC/MS/MS. Toward this end, poly(N-isopropylacrylamide) (PNIPAM), an extensively studied thermoresponsive polymer, is a hydrogel with tailorable swelling properties dependent upon its polymeric composition and surrounding media. This polymer holds a lower critical solution temperature (LCST) around 32 °C that marks its transition from a relatively hydrophilic, swollen state to a hydrophobic, collapsed state once heated, and prior research indicates that surfactants such as sodium dodecyl sulfate can heavily influence the temperature at which this transition occurs and the ultimate swelling ratio for crosslinked hydrogels. Two particularly concerning fluorosurfactants, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), were hypothesized to act similarly to their non-fluorinated analogs by augmenting the swelling of PNIPAM in a dose-dependent manner. The effect of these fluoropollutants on PNIPAM was therefore studied to identify 1) if PFOS and PFOA would have an appreciable effect on the swelling behavior of varying PNIPAM morphologies, 2) if the swelling response could be enhanced by adding functional comonomers into the PNIPAM backbone, and 3) if the swelling behavior could be outfitted with Förster resonance energy transfer (FRET)-compatible dyes to signal the contaminants’ concentration. As such, crosslinked PNIPAM hydrogels were functionalized with fluorinated comonomers to induce fluorine-fluorine attraction amongst the polymers and their analytes to strengthen their recognition capability and microgels were equipped with FRET-capable dyes to achieve a fluorescent transduction motif indicative of the contaminants’ presence. Results indicated that PFOS augments the swelling of PNIPAM hydrogels significantly while PFOA causes microgels to collapse at temperatures below their innate LCST. FRET primarily replicated swelling observations as expected for the distance-mediated fluorescent phenomenon. Though the fluoropollutants generated appreciable swelling perturbations at concentrations within the micromolar range, additional functionalization is necessary to exploit the molecular-level interactions between PNIPAM and target fluorosurfactants to yield detection limits within the range needed for environmental applications

    Spectroscopic Characterization of Multilayered Functional Protective Polymers via Surface Modification with Organic Polymers against Highly Toxic Chemicals

    Get PDF
    Recent advances in biopolymers, including functional biomaterials for the manufacture of personal protective garments (PPGs) or equipment (PPE) have dramatically improved their efficiency and performance. Good and acceptable permeation characteristics, mechanical strength and durability are common attributes of these materials simultaneously without compromise for their cost-effectiveness and manufacturability. The comprehensive characterization of these materials and specimens’ three-dimensionality with the endeavor to obtain the highest resistance to highly toxic agents such as nuclear, chemical and biological warfare agents is the must fulfilling aim in today’s global interest in continuous development in this area

    Development and characterization of fluorescent pH sensors based on porous silica and hydrogel support matrices

    Get PDF
    The hydrogen ion activity (pH) is a very important parameter in environment monitoring, biomedical research and other applications. Optical pH sensors have several advantages over traditional potentiometric pH measurement, such as high sensitivity, no need of constant calibration, easy for miniaturization and possibility for remote sensing. Several pH indicators has been successfully immobilized in three different solid porous materials to use as pH sensing probes. The fluorescent pH indicator fluorescein-5-isothiocyanate (FITC) was covalently bound onto the internal surface of porous silica (pore size ~10 nm) and retained its pH sensitivity. The excited state pK* a of FITC in porous silica (5.58) was slightly smaller than in solution (5.68) due to the free silanol groups (Si-OH) on the silica surface. The pH sensitive range for this probe is pH 4.5 - 7.0 with an error less than 0.1 pH units. The probe response was reproducible and stable for at least four month, stored in DI water, but exhibit a long equilibrium of up to 100 minutes. Sol-gel based pH sensors were developed with immobilization of two fluorescent pH indicators fluorescein-5-(and-6)-sulfonic acid, trisodium salt (FS) and 8-hydroxypyrene- 1,3,6-trisulfonic acid (HPTS) through physical entrapment. Prior to immobilization, the indicators were ion-paired with a common surfactant hexadecyltrimethylammonium bromide (CTAB) in order to prevent leaching. The sol-gel films were synthesized through the hydrolysis of two different precursors, ethyltriethoxysilane (ETEOS) and 3- glycidoxypropyltrimethoxysilane (GPTMS) and deposited on a quartz slide through spin coating. The pK a of the indicators immobilized in sol-gel films was much smaller than in solutions due to silanol groups on the inner surface of the sol-gel films and ammonium groups from the surrounding surfactants. Unlike in solution, the apparent pK a of the indicators in sol-gel films increased with increasing ionic strength. The equilibrium time for these sensors was within 5 minutes (with film thickness of ~470 nm). Polyethylene glycol (PEG) hydrogel was of interest for optical pH sensor development because it is highly proton permeable, transparent and easy to synthesize. pH indicators can be immobilized in hydrogel through physical entrapment and copolymerization. FS and HPTS ion-pairs were physically entrapped in hydrogel matrix synthesized via free radical initiation. For covalent immobilization, three indicators, 6,8-dihydroxypyrene-1,3- disulfonic acid (DHPDS), 2,7-dihydroxynaphthalene-3,6-disulfonic acid (DHNDS) and cresol red were first reacted with methacrylic anhydride (MA) to form methacryloylanalogs for copolymerization. These hydrogels were synthesized in aqueous solution with a redox initiation system. The thickness of the hydrogel film is controlled as ~ 0.5 cm and the porosity can be adjusted with the percentage of polyethylene glycol in the precursor solutions. The pK a of the indicators immobilized in the hydrogel both physically and covalently were higher than in solution due to the medium effect. The sensors are stable and reproducible with a short equilibrium time (less than 4 minutes). In addition, the color change of cresol red immobilized hydrogel is vivid from yellow (acidic condition) to purple (basic condition). Due to covalently binding, cresol red was not leaching out from the hydrogel, making it a good candidate of reusable pH paper
    corecore