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Abstract

The hydrogen ion activity (pH) is a very important parameter in environment monitor-

ing, biomedical research and other applications. Optical pH sensors have several advan-

tages over traditional potentiometric pH measurement, such as high sensitivity, no need of

constant calibration, easy for miniaturization and possibility for remote sensing. Several

pH indicators has been successfully immobilized in three different solid porous materials

to use as pH sensing probes.

The fluorescent pH indicator fluorescein-5-isothiocyanate (FITC) was covalently bound

onto the internal surface of porous silica (pore size∼10 nm) and retained its pH sensitivity.

The excited state pK∗
a of FITC in porous silica (5.58) was slightly smaller than in solution

(5.68) due to the free silanol groups (Si-OH) on the silica surface. The pH sensitive range

for this probe is pH 4.5 - 7.0 with an error less than 0.1 pH units. The probe response

was reproducible and stable for at least four month, stored in DI water, but exhibit a long

equilibrium of up to 100 minutes.

Sol-gel based pH sensors were developed with immobilization of two fluorescent pH

indicators fluorescein-5-(and-6)-sulfonic acid, trisodium salt (FS) and 8-hydroxypyrene-

1,3,6-trisulfonic acid (HPTS) through physical entrapment. Prior to immobilization,
xxix



the indicators were ion-paired with a common surfactant hexadecyltrimethylammonium

bromide (CTAB) in order to prevent leaching. The sol-gel films were synthesized

through the hydrolysis of two different precursors, ethyltriethoxysilane (ETEOS) and 3-

glycidoxypropyltrimethoxysilane (GPTMS) and deposited on a quartz slide through spin

coating. The pKa of the indicators immobilized in sol-gel films was much smaller than

in solutions due to silanol groups on the inner surface of the sol-gel films and ammonium

groups from the surrounding surfactants. Unlike in solution, the apparent pKa of the indi-

cators in sol-gel films increased with increasing ionic strength. The equilibrium time for

these sensors was within 5 minutes (with film thickness of ∼470 nm).

Polyethylene glycol (PEG) hydrogel was of interest for optical pH sensor development

because it is highly proton permeable, transparent and easy to synthesize. pH indicators

can be immobilized in hydrogel through physical entrapment and copolymerization. FS

and HPTS ion-pairs were physically entrapped in hydrogel matrix synthesized via free

radical initiation. For covalent immobilization, three indicators, 6,8-dihydroxypyrene-1,3-

disulfonic acid (DHPDS), 2,7-dihydroxynaphthalene-3,6-disulfonic acid (DHNDS) and

cresol red were first reacted with methacrylic anhydride (MA) to form methacryloyl-

analogs for copolymerization. These hydrogels were synthesized in aqueous solution with

a redox initiation system. The thickness of the hydrogel film is controlled as ∼ 0.5 cm

and the porosity can be adjusted with the percentage of polyethylene glycol in the precur-

sor solutions. The pKa of the indicators immobilized in the hydrogel both physically and

covalently were higher than in solution due to the medium effect. The sensors are stable

and reproducible with a short equilibrium time (less than 4 minutes). In addition, the color

change of cresol red immobilized hydrogel is vivid from yellow (acidic condition) to pur-

ple (basic condition). Due to covalently binding, cresol red was not leaching out from the

hydrogel, making it a good candidate of reusable "pH paper".
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1. INTRODUCTION

1.1 Dissertation overview

1.1.1 Dissertation goal

My dissertation project focuses on optical pH sensor development and characteriza-

tion. pH is a commonly measured parameter in many applications such as environment

monitoring, bioprocessing and biomedical diagnosis. The traditional pH electrodes behave

unpredictable in low ionic strength solution and need to be calibrated frequently. Optical

pH sensing has many advantages over electrochemical technique including high sensitivity,

no need for a reference signal, immunity to electrical interference, and possibility of remote

sensing. Optical pH sensors are obtained by covalently binding or physically entrapment

of various pH indicators into three different matrices: mesoporous silica, sol-gel films and

hydrogel films. The properties of these matrices such as network structure were character-

ized. The spectra behavior of indicators in different matrices as well as in buffer solution

was studied. The potential of these dyes immobilized matrices as optical pH sensors was

also evaluated.

The purpose of this dissertation work is two-fold:
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• First, to synthesize three different matrices: mesoporous silica, sol-gel films and

hydrogels and to covalently bind or physically entrap various pH indicators in to

these matrices.

• Second, to study the performance of these pH sensors including the properties of the

matrices and the behaviors of dyes in matrices such as spectral shifts, pKa shifts, flu-

orescence lifetimes, leaching, reproducibility and stability to evaluate their potential

for pH sensing.

1.1.2 Dissertation outline

This chapter first introduces pH and the present methods for pH measurement, and then

introduces fluorescence spectroscopy as fluorescent ratiometric method was the detection

method for pH measurements in this study. Lastly, this chapter reviews the present works

of optical pH sensor development.

Chapter 2 presents the optical sensor development based on covalently binding a fluo-

rescent pH indicator, fluorescein, on the internal surface of mesoporous silica. The mor-

phology of the mesoporous silica and the fluorescence behavior of fluorescein in porous

silica were studied.

In chapter 3 we present sol-gel based pH sensors. The sol-gel thin films were synthe-

sized based on the catalyzed hydrolysis of ORganically MOdified SILicates (ORMOSILs).

Fluorescent pH indicators were first ion-paired with a common surfactant and then physi-

cally doped in the thin films during the sol-gel process. The spectra behavior of these two

indicators in sol-gel thin films was studied and compared with solution phase.
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Chapter 4 presents hydrogel based pH sensors. The polyethylene glycol hydrogel was

synthesized by polymerization of polyethylene glycol diacrylate (PEGDA) using both free

radical initiator and redox initiation system. Network properties such as morphology and

swelling properties of the hydrogel were studied. Various fluorescent indicators were im-

mobilized in the hydrogel by both physical entrapment and covalent binding. The spectral

behavior of immobilized indicators in hydrogel was obtained. Sensor performances such

as equilibrium time, leaching, stability were studied.

Finally, chapter 5 presents the conclusion for this dissertation work as well as the out-

look for further work based on the analysis of the material presented in the previous chap-

ters.

1.2 pH definition and measurement

1.2.1 pH definition

The concept of pH was first introduced by Danish chemist Søren Peder Lauritz

Sørensen in 1909 and revised to the modern pH in 1924 because of its definition and mea-

surements in terms of electrochemical cells. In chemistry, pH is a measure of the activity of

the hydrogen ion, H+. pH is defined as the negative logarithm of the hydrogen ion activity,

aH+ in a solution.

pH = −log10(aH+) (1.1)

3



This definition was adopted because ion-selective electrodes are used to measure pH,

and the pH glass electrode is sensitive to hydrogen ion activity aH+ . The activity of the

hydrogen ion can be defined by its relation to concentration ([H+], M) and the activity

coefficient, γH+ , according to Debye-Hückel theory:

aH+ = γH+ [H+] (1.2)

If the activity coefficient is unity, then activity is equal to concentration. This assump-

tion is true only in diluted solutions, where ionic strength is low. It is important to know

what factors influence the activity coefficient in order to know how they influence the pH

measurement.

The factors that affect the activity coefficient are temperature (T ), the ionic strength

(I), the dielectric constant (ε), the ion charge (zi), the size of the ion (Å) and density of the

solvent (d) [1]. All of these factors are characteristics of the solution and can influence the

activity through two main effects. The first one is the salt effect designated as γxH+ . It can

be approximated for hydrogen ions by the following expression:

logγxH+ =
−0.5I1/2

1 + 3I1/2
(1.3)

where I is the ionic strength, which is defined as one half the sum of molarity times the

square of the charge of the ionic species:

I =
1

2

∑
[i]z2

i (1.4)
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The second effect is the medium effect, which is designated as γmH+ . This effect relates

the influence of the solvent on the hydrogen ion activity. It reflects the electrostatic and

chemical interactions between the ion and the solvent, of which the primary interaction is

solvation. This brings up the question of pH measurements in nonaqueous solvent or mixed

solvents. Most often an aqueous pH buffer solution is used to standardize the pH measuring

system.

Thus, the activity is related to concentration through both salt effect and medium effect.

aH+ = γxH+γmH+ [H+] (1.5)

The pH scale was established to provide a convenient and effective means of commu-

nication with regard to the relative acidity of a particular solution. Its range is based on the

dissociation constant for water, Kw (Kw = aH+ · aOH−). In pure water, hydrogen ion and

hydroxyl ion concentrations are equal at 10−7 M, which is a neutral solution with pH = 7.

Since most samples have less than 1 M H+ or OH−, the extremes of pH 0 and pH 14 are

established. For concentrated strong acid or base, their pH may be below 0 or above 14,

but they are not frequently measured.

1.2.2 Traditional pH measurements

1.2.2.1 Potentiometric methods

The most common systems for pH sensing are based upon potentiometric devices. The

most popular potentiometric approach utilizes a glass electrode because of its high selec-
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tivity for hydrogen ions in a solution. pH measurement based on potentiometric method

are highly reliable fairly straightforward to operate [2].

The electrode potential (E) in a solution follows the Nernst equation:

E = E0 +
RT

F
ln(aH+) = E0 − 2.303RT

F
pH (1.6)

where E is a measured potential, E0 is the standard electrode potential, R is the gas

constant, T is the temperature in Kevin, F is the Faraday constant. For each H+, number of

electrons transferred is 1. As shown in the equation, Electrode potential, E, is proportional

to pH. The reference electrode may be a silver chloride or a calomel electrode. An in-built

reference electrode is usually included in a combined glass electrode.

Reference electrode | concentrated solution of KCl || test solution | H2 | Pt

For measurement of pH of a certain solution, the electrode has to be calibrated against

buffer solutions of known hydrogen ion activity, i.e. pH. Both electrode potential of stan-

dard buffer solution and unknown solution are measured, and the pH of unknown solution

can be calculated with the Nernst equation, eq 1.6.

The problem for potentiometric measurement of pH is that they are done in cells with

liquid junction, which separates the inner reference electrode compartment from the mea-

sured solution and contributes liquid junction potential, Ej , to the cell voltage [3]. The

variation of liquid-junction potential with ionic strength for many types of commercial ref-

erence electrode causes 0.1 up to 1 pH unit error when measuring pH in solutions of low

ionic strength (conductivity < 150 µS cm−1) such as in fresh water [4,5].
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Although these systems are popular because of their simplicity and low cost, glass pH

electrodes have several shortcomings for autonomous sensing in natural waters. The main

problems result from irreproducible junction potentials as discussed in the above para-

graph. And the glass electrodes need to be calibrated frequently which is not convenient

for remote sensing and field studies. Even when the electrodes are frequently calibrated,

large systematic errors can arise from differences between standard and sample junction

potentials [6–8].

1.2.2.2 Spectrophotometric methods

The earliest method of pH measurement was by chemical indicators, e.g. litmus paper

and pH paper, which change color based on the pH of a solution [2]. When a basic solution

is added to the litmus paper, it turns to blue; while a acidic solution is added to the litmus

paper, it turns pink. Commercially available universal pH paper is made from absorbent

paper, in which several indicators (e.g.phenolphthalein, methyl red, bromothymol blue and

thymol blue) are impregnated. pH is measured with visual comparison of the color of a

test solution with a standard color chart, with sensitivity, ± 1 pH unit. pH can be more

precisely determined through absorbance measurement with a spectrophotometer.

The spectrophotometric method for pH measurement is based on the equilibrium dis-

sociation of a weak acid indicator [7]:

HL− 
 H+ + L2− (1.7)

where HL− is the protonated form and L2− is the deprotonated form. The sulfoneph-
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thalein type indicators (H2L) are most commonly used pH indicators. The diprotonated

form is not present at typical freshwater pH (pKa is ∼ 2). The equilibrium expression for

the second dissociation is:

Ka =
aH+aL2−

aHL−
= (

[H+][L2−]

[HL− )(
γH+γL2−

γHL−
) (1.8)

where Ka is the indicator equilibrium constant (acid dissociation constant) and the γ

is the individual ion activity coefficient. The logarithm form of eq 1.8 can be used to

determine the pH:

pH = pKa + log(
R− e1

e2 −Re3

) + log(
γL2−

γHL−
) (1.9)

R =
A2

A1

(1.10)

e1 =
εHL2

εHL1

, e2 =
εL2

εHL1

, e3 =
εL1

εHL1

(1.11)

where pKa is −logKa, R is the absorbance ratio (eq 1.10), with A2 and A1 as the

absorbance for the base and acid form of the indicator at their absorbance maximum wave-

length 2 and 1 , respectively. ei are the molar absorptivity ratios as shown in eq 1.11,

where ε is the molar absorptivity of either the acid or base form of the indicator at either

wavelength 1 or 2 (the ion charges are omitted for clarity). The absorbance spectra of both

protonated and deprotonated forms of a typical indicator are shown in Figure 1.1.
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Figure 1.1. Representative absorbance spectra of protonated and deprotonated spectra of cresol red
(14.9 µM) in buffer solution (IS = 0.100 M).
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Spectrophotometric techniques using pH indicators offer an alternative to potentiomet-

ric pH measurements. Indicators have the advantages of very rapid equilibrium and ob-

viate most of the problems associated with potentiometric measurements. Over the past

few decades, spectrophotometric procedures developed for measurement of fresh water

and seawater pH have improved the precision by more than one order of magnitude [7,9].

Indicator-based in situ pH measurements for fresh water and sea water were developed [5,6,

8,10]. Martz et al. developed a flow-through instrument for pH measurement, which is sim-

ply based on spectrophotometric absorbance measurements of a mixture of water sample

and indicator stock solution pumped into the cuvette [8].

One concern regarding indicator-based pH measurements is that the addition of a weak

acid indicator can change the pH of weakly buffered water samples. The path length of the

cuvette is increased to 10 cm to minimize the amount of indicator added [5]. However, for

some application, a 10 cm path length may be impractical.

In the past few decades, various pH sensitive indicators (lots of them are fluorescent

indicators) have been immobilized in different kinds of solid matrix to used as optical sen-

sors for pH measurements. Optical pH sensors are more advanced than spectrophotometric

methods because they does not need an indicator reservoir. Instead, indicators are immo-

bilized into a solid matrix without leaching, and no moving parts are required to pumping

indicator and samples, thus the cost is reduced. Compared to potentiometric pH methods,

they offer more advantages such as high sensitivity, no need for a reference signal, immu-

nity to electrical interference, easy miniaturization and possibility of remote sensing. The

recently developed optical pH sensors are reviewed in section 1.4.
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1.3 Fluorescence

1.3.1 Physical principles

Luminescence is the emission of light from the electronically state of some substances.

Luminescence is divided into fluorescence and phosphorescence, based on the nature of

the excited states. Fluorescence is emission of light from singlet excited states and phos-

phorescence is the emission from triplet excited states. For fluorescence, the electron in

excited-state orbital is paired to the electron in the ground-state orbital. Thus electron re-

turning from excited state to the ground state is spin-allowed and occurs rapidly by emission

a photon (typically 108 s−1), therefore a typical fluorescence lifetime is near 10 ns (10 ×

10−9 s). For phosphorescence, the transitions from the triplet excited states to the ground

states are usually forbidden because the electrons in the triplet excited state and singlet

ground state have the same spin orientation. Thus the phosphorescence has a slow emis-

sion rate, about 103-100 s−1, resulting long lifetimes (up to milliseconds, even seconds)

[11].

The processes which occur between the absorption and emission of light are usually

illustrated by a Jabłoński diagram (Figure 1.2). These diagrams are named after Professor

Alexander Jabłoński, who is now well known as the father of fluorescence spectroscopy.

The energy state, S0, S1, S2 are the singlet ground state, first singlet excited state and

second singlet excited state, respectively. At each of these electronic energy levels the

fluorophores can exists in a number of vibrational levels. Light absorption between the

ground state and excited state is an instantaneous process (typically 10−15 s). Following

light absorption, several processes usually occur. A fluorophore is usually excited to some
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higher vibrational level of the excited states, and then rapidly relax to the lowest vibrational

level. This process is called internal conversion and generally occurs in 10−12 s or less.

Hence, fluorescence emission generally results from the lowest-energy vibrational state of

S1. Return to the ground state typically occurs to higher excited vibrational ground-state

level, which then quickly reaches the lowest vibrational states through internal conversion

as well.

Molecules in the singlet excited state, S1, can also undergo a spin conversion (inter-

system crossing) to the first triplet state, T1. Emission from triplet excited state is called

phosphorescence and is generally shifted to longer wavelengths (lower energy) compared

to the fluorescence. The heavy atoms such as bromide and iodine facilitate intersystem

crossing and enhance phosphorescence quantum yields and that is why those molecules

containing heavy atoms are often phosphorescent.

S0

S2

S1 T1

Absorption Fluorescence Phosphorescence

vibrational relaxation

internal conversion

intersystem crossing

internal and external conversion

Figure 1.2. One Jabłoński diagram of absorbance, fluorescence and phosphorescence.

The energy of fluorescence is usually less than that of absorption, i.e. fluorescence

occurs at longer wavelengths than absorption. Energy losses between excitation and emis-

sion called the Stokes’ Shift are often observed for fluorescent molecules in solution. One

common cause of the Stokes’ shift is the internal conversion from higher vibrational level
12



to the lowest vibrational level in both the excited state and ground state. In addition to

the internal conversion effect, solvent effects, excited-state reactions, complex formation,

and/or energy transfer can result in further Stokes’ shift [11].

The fluorescence lifetime and quantum yield are important characteristics of a fluo-

rophore. The quantum yield is the number of emitted photons relative to the number of

absorbed photons. The lifetime determines the time available for the fluorophore stays in

the excited states in its environment.

The quantum yield is determined by the relative rate constants for the processes that

depopulate the lowest excited state. Following the light absorption, there are several pro-

cess responsible for return to the ground state. These process are categorized into two

groups, fluorescence (kf ), and all the possible nonradiative decay (knr), which are intersys-

tem crossing and phosphorescence, internal and external conversion, predissociation and

dissociation. The Quantum yield, φ, which is the fraction of fluorophores which decay

through emission, is given by:

φ =
kf

kf + knr
(1.12)

The quantum yield can be close to unity if the radiationless decay rate is much smaller

than the rate of fluorescence decay, that is, knr � kf . Substances with the largest quantum

yields, such as rhodamines, display the brightest emissions.

The lifetime (τ ) is defined by the average time a fluorophore spends in the excited state

before returns to its ground state:
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τ =
1

kf + knr
(1.13)

Fluorescence emission is a random process, and not all the molecules emit their protons

at t = τ . It is average of time that all the molecules spends in their excited states. For a

single exponential decay, 63% of the molecules have decayed prior to t = τ and 37% decay

at t > τ [11].

A decrease in fluorescence intensity is called quenching, and it can happen through var-

ious processes and by different mechanisms. When the excited state fluorophore contacts

with some other molecule (quencher) in condensed phase, it will be deactivated. Such a

process is called collisional quenching. In this case, the excited-state fluorophore returned

to its ground state during a collision with the quencher without emitting lights. Molecules

such as oxygen, halogens, amines and acrylamide (electron-deficient molecules) can act as

collisional quenchers. For different fluorophore-quencher pairs, the quenching mechanism

are quite different. For instance, Quenching by halogens and heavy atoms occurs due to

spin-orbit coupling and intersystem crossing to the triplet state [11].

Besides collisional quenching, fluorescence quenching can occur by other processes.

Static quenching or contact quenching refers to a process that fluorophores can form non-

fluorescent complexes with quenchers in the ground state. Another type of quenching

mechanism is based on the energy transfer between two molecules, which is commonly

known as resonance energy transfer (RET). For example, quenching of indole by acry-

lamide is probably due to electron transfer from indole to acrylamide, which does not

occur in the ground state [11]. Fluorescence sensing based on RET is of great interest in

the nowadays. Quenching can also occurs by nonmolecular mechanisms, for example, the
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incident light can be attenuated by the fluorophore itself or other absorbing species.

Fluorescence typically occurs from fused aromatic molecules with low energy π →

π∗ transition. In contrast, atoms are generally nonfluorescent in condensed phases. One

exception is the lanthanides elements, such as cerium. The fluorescence of these atoms

results from electronic transitions between f orbitals.

Fluorescence spectral data are generally presented as emission and excitation data.

A fluorescence excitation or emission spectrum is a plot of fluorescence intensity versus

wavelength (nanometers, nm). Figure 1.3 shows the fluorescence excitation and emission

spectra of a common fluorophore, 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) in solu-

tion.

Figure 1.3. Fluorescence excitation and emission spectra of HPTS (0.99 µM) in solution, the
emission wavelength for the excitation spectra is 510 nm and the excitation wavelength for the
emission spectra is 467 nm.

Fluorescence measurements can be broadly classified into two types, steady-state mea-

surement and time-resolved measurement. Steady-state measurements are most common
15



fluorescence measurement, which are performed with constant illumination and observa-

tion. The sample is illuminated with a continuous beam of light, and the excitation or emis-

sion spectrum is recorded. When the sample is first exposed to light, steady state is reached

almost immediately, because the lifetime of fluorescence is in the range of nanosecond.

The second type of measurements, time-resolved measurements, is used for measuring in-

tensity decays. To perform these measurements, the sample is exposed to a pulse of light,

where the pulse width is shorter than the decay time of the sample. This intensity decay is

then recorded with a high-speed detection system which can measure the intensity on the

nanosecond timescale.

Steady-state fluorescence measurement are simple and most commonly used. Nanosec-

ond time-resolved measurement require complex and expensive instrumentation, however,

it can resolve much more information which are lost during the time-averaging process in

steady-state measurement.

1.3.2 Fluorescence sensing

Fluorescence sensing of chemical and biochemical analytes is an active area of research

because of its high sensitivity. Fluorescent molecule concentration as low as 1 part per

trillion (1ppb) can be measured [12].

Fluorescence method instead of absorption method is often used for high-sensitivity

detection. The reason for this lies in the different ways of measurements for absorbance and

fluorescence. Absorption measurement is based on the difference in the intensity between

light passing through the reference and the sample. In fluorescence method, the intensity

of the emitting light is recorded directly without comparing with a reference light. In
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other words, the advantage of fluorescence measurement is due to the measurement of

lights relative to a dark background not a reference beam, which is required for absorption

measurements.

The most direct fluorescence sensing method is based on decrease or increase on fluo-

rescence intensity of a fluorophore in response to the concentration of some specific ana-

lyte. This type of measurement is based on collisional quenching, in which the fluorescence

of a fluorophore is decreased by a relevant species. These measurements are only useful

with a few clinic related analytes such as O2 [11]. The fluorescence sensing based on inten-

sity is less reliable because fluorescence intensity is affected by the variation of fluorophore

concentration and the fluctuation of the excitation light sources. For this reason, it is im-

portant to use measurements that are independent of the concentration of the fluorescence

compound. This has been accomplished using ratiometric probes, which display shifts

in their absorption or emission spectra upon contact of the concerned analyte. The con-

centration of the analyte can then be determined from the ratio of fluorescence intensities

measured at two excitation or two emission wavelengths. Because these ratios are inde-

pendent of the fluorophore concentration or fluctuation of excitation lights, sensing based

on ratiometric methods are desirable. For example, Wencel et al has developed an optical

pH sensor based on the ratiometric method of a dual excitation fluorescent indicator, HPTS

[13].

Fluorescence lifetime can be used for sensing, because fluorescence decay is not af-

fected by the concentration of fluorophores or the fluorescence intensity. A fluorescence

lifetime pH sensitive probe was developed by Berezin et al. [14].

Resonance energy transfer (RET) is a valuable phenomenon for fluorescence sensing.

In resonance energy transfer, a photon from the excited fluorophore (donor) raises the en-
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ergy state of an electron in another molecule (acceptor), and results in a decreases in donor

intensity and/or decay time. The donor and acceptor have to be close enough for RET

to happen, typically macromolecular distance (1 - 10 nm) and the emission spectrum of

the donor molecule must overlap with the absorption spectrum of the acceptor molecule.

RET is commonly used to detect association of proteins as occurs in immunoassays [11].

Sensors has also been developed which cation acceptors whose absorption spectra are de-

pendent on pH. A change in pH results in a change in absorption spectrum of the acceptor,

which in turn increase or decrease the fluorescence intensity of the donor. One of the ear-

liest reported RET pH sensor used eosin as the donor and phenol red as the acceptor [15].

The basic form of phenol red absorbs at 546 nm, where eosin emits. Thus, the emission

intensity of eosin decreased as the pH increased.

Fluorescence sensing is considered as one of the rapid and low-cost testing methods for

various application in clinical, bioprocess, and environmental area. Fluorescence is widely

used in life science because most cellular components are nonfluorescent and thus less

interference and it is a non-destructive measurement of biological molecules. In this case,

a protein or other component is often labeled with an fluorophore. For instance, Yapici,

et al. have synthesized new rhodamine nitroxide based fluorophores to detect hydrogel

radicals in the living cells [16].

1.4 Literature review of optical pH sensors

Optical pH sensor is the sensing of pH based on pH-sensitive indicators which are im-

mobilized in some kind of supporting material such as cellulose, sol-gel films and hydrogel

films. The first optical pH sensor (optode) was developed by Peterson et al. in 1980, by
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utilizing absorbance of the indicator, phenol red [17]. In 1982, the first fluorescence-based

pH-optode was described by Seitz and coworkers by covelently immobilization of fluores-

ceinamine in controlled porosity glass [18]. Over the past few decades, the development

of pH sensors has grown rapidly, because of the need of pH measurement in various scien-

tific research and practical applications. Optical and fiber-optic pH sensors offer numerous

advantages over traditional potentiometric method such as no effect from electrical interfer-

ence, easy miniaturization, and possibility of remote sensing and and in vivo measurement

[19].

1.4.1 Indicator immobilization methods

The immobilization of pH indicators is a key step in the development of optical pH

sensors. There are three widely used methods for immobilization of pH indicator on/in a

solid substrate : adsorption, entrapment and covalent binding.

1.4.1.1 Adsorption

In the adsorption method, a pH indicator is adsorbed physically or chemically on a

solid porous substrate. This method is relatively simple but not very reliable since the

adsorbed indicator may leach out [19]. In 1986, Moreno et al. described a pH sensi-

tive optical fiber sensor based on electrostatic immobilization of cresol red on the anionic

Dowex resin and applied it to the determination of pH in pasteurized dairy milk [20]. The

commercially available ion exchange polymer matrix, Nafion film, was used for electro-

static immobilization of a dye pair acriflavine and rhodamine 6G [21]. This optical pH
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optode is based on the pH dependent energy transfer from acriflavine to rhodamine 6G. An

electrostatic layer-by-layer technique has been used to immobilize pH indicator to charged

polyelectrolyte such as polycation, poly(allylamine hydrochloride) (PAH) and polyanion,

poly(acrylic acid) (PAA) to use as pH sensors [22,23]. However these sensitive coatings

show short lifetimes due to their high rate of photobleaching; some post-treatments like

thermal curing showed improved performance [24,25]. Shi et al. developed an optical pH

sensor based on the electrostatic immobilization of 8-hydroxy-1,3,6-pyrenetrisulfonic acid

(HPTS) on a polyelectrolyte-containing silica, which can be used in solution with low ionic

strength but leaching of HPTS became a problem at high concentration of electrolytes [26].

Hulth et al. used a transparent film consisting of a thick polyester foil with cellulose ac-

etate coating for adsorbing pH indicators to work as pH sensors [27,28]. The adsorption

was accomplished through immersing the sensing foil in a high ionic strength solution of

pH indicator solution. The immobilization was based on the fluorophore-foil interactions,

and according to their result, the immobilization was irreversible. Nivens et al. successfully

developed a pH sensor based on the electrostatic attachment of HPTS in sol-gel film coated

fiber by soaking the coated fiber in the HPTS solution; the sensor needed to be stored under

dry condition to prevent leaching [29].

1.4.1.2 Entrapment

In the entrapment method, a pH indicator is physically entrapped within a porous poly-

meric substrate. This method is quite easy and reliable but indicator may slowly leach out.

Cellulose is widely used in the development of pH sensors because it is permeable for both

water molecules and ions, and it is inert in both acidic and basic solutions. Choi and Hako-

nen et al. have developed pH sensors based on the physical entrapment of HPTS and flu-
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orescein in ethyl cellulose; an ion-pair reagent tetraotylammonium ions (TOA+) was used

to form ion-pairs with pH indicators before immobilization to prevent leaching [30–32].

Sol-gels have also been widely used as supporting matrices for pH indicator immobiliza-

tion because of they are highly porous thin films that are optical transparent and provide

a stable and inert environment for dye immobilization, and they are really easy to attach

to glass or silica [33–36]. Normally, pH indicators were first paired with ion-pair reagent

before entrapment in sol-gel films to prevent leaching [13,37,38]. Another key advantage of

sol-gel derived matrix is the ability to entrap multiple species within a confined space. Gul-

cev et al. have developed a biosensing using a fluorescently-labelled dextran co-entrapped

with a hydrolytic enzyme in sol-gel films to sense the acidic or basic products generated

by the enzymes through the changes in emission of the pH sensitive dye [39]. Kasik et al.

increased the sensitivity of the pH sensor by co-entrapped HPTS with dichlorotris-(1,10-

phenanthroline)ruthenium(II) hydrate (Ru-phen dichloride) to work as an internal reference

[40]. A commerically available sol-gel material, Liquicoat was also used for entrapment

of pH indicators [41]. Hydrogel materials have also been used in pH indicator entrapment

for pH sensor development mainly because of their high proton-permeability. Kermis et al.

developed a pH sensor by first immobilizing HPTS onto Dowex resin and then entrapping

into a hydrogel layer [42]. Modified pH indicators with long chains were physically em-

bedded in an uncharged hydrogel matrix for use in a marine system by Schroder et al. [43].

Besides cellulose, sol-gel and hydrogel films, silica nanoparticles have been used for pH

indicator entrapment [44].
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1.4.1.3 Covalent binding

In the covalent binding method, a pH indicator is bound onto a solid substrate or

in a porous polymeric substrate through chemical bond. This method is usually time-

consuming and much complicated compared to physical entrapment method.The advan-

tage of this method is that immobilized indicators are not likely to leach out. The same

support material discussed in entrapment method such as cellulose, sol-gel and hydrogel

films are also widely used for covalent binding of pH indicators for pH sensing. Kostov

et al. [45] and Ensafi et al. [46] have successfully bound several indicators to acetylcellu-

lose film by previous hydrolysis of the cellulose films. The commonly used pH indicator

HPTS was covalently bound to cellulose acetate material through a sulfonamide linkage

[47,48]. Covalent binding can also be accomplished through previously modification of pH

indicator, as Liu et al., first reacted phenolphthalein with formaldhyde to produce a series

of prepolymers with hydroxymethyl groups which can be covalently bound to diacetylcel-

lulose membrane [49]. Covalent binding of pH indicators to sol-gel films or glass surface

normally through reacting the indicators with a silane reagent with amino groups before or

after silane hydrolysis [50–52]. Recently several researchers have worked on copolymer-

ization of pH indicators in hydrogel films as pH sensor [53–57]. In this approach, the pH

sensitive dye was first modified with attachment of alkenyl groups which can be linked with

hydrogel monomers during the polymerization reaction. In addition to the frequently used

materials, carbon nanotubes were also fabricated for covalent immobilization of HPTS to

produce a pH sensor [58].
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1.4.2 Detection methods

Most optical pH sensors are based on absorption and fluorescence detection methods.

Absorption measurements are not very sensitive and required the use of high concentra-

tion of pH indicator or a thick sensing layer. In contrast, fluorescence methods are more

sensitive because of the dark background and no need of a reference beam. Measurements

of absorption and fluorescence intensity often suffer from instabilities resulting from the

decrease in the concentration of pH indicators due to leaching and photobeaching, and

fluctuations in the intensity of light source as well. Ratiometric methods have been used to

overcome these problems. Lifetime based measurements can also overcome these problem

because the fluorescence decay time of a dye usually does not depend on its concentration.

1.4.2.1 Absorption

Absorption detection is widely used in the development of optical pH sensors. In the

pH range of interest, a pH sensitive dye behaves as a weak acid and exists in protonated or

deprotonated forms, each having a different absorption spectrum. As the pH of the solution

varies, the relative concentration of protonated or deprotonated forms varies. Fiber optic

pH sensor based on absorption of phenol red was first developed by Peterson et al. [17].

Other pH sensitive indicators such as Neutral Red [45], α-Naphthyl Red [46] Alizarin

red [35] and phenolphthalein [49] have been immoblized in solid support as pH sensors

based on absorption. Absorption detection is simple but not very sensitive, and also suffers

from leaching or photobleaching of pH indicator in solid support and the variations in

the light sources. Such instabilities can be resolved by measuring absorbance at multiple

wavelengths, such as at peak absorption (to respond to pH), at isobestic point(to account
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for indicator concentration) and at zero absorption (as the baseline to account for light

intensity) [59]. A broad range fiber-optic pH sensor based on absorption was presented by

Dong et al. [60]. The sensor was prepared by immobilizing a mixture of three different

pH sensitive indicators: cresol red, bromophenol blue and chlorophenol red into sol-gel

materials. Another board range optical pH sensor based on absorption was presented by

Arregui et al. by immobilizing several universal indicators to a commercially available

sol-gel material, Liquicoat [41].

1.4.2.2 Fluorescence

Fluorescence detection is much more sensitive compared to absorption because it does

not require a reference beam, thus it works at very low concentration of indicators. Over

the past few decades, many optical pH sensors based on the fluorescence method have

been developed [24,26,29,36,44,50,51,54,57,61]. The effect of leaching or photobeaching of

indicators from the solid support and fluctuations in the intensity of the light source can be

overcome by the ratiometric method (the use of the ratio of intensities at two excitation or

emission wavelength). An Optical pH sensor based on a fluorescence ratiometric method

is widely developed [34,39,43,52,53,56,62]. Among the pH indicators, HPTS is one of the

commonly used ones for pH sensing, because of its large Stokes’ shift, high stability and

high quantum yield. In addition, its dual excitation can be used for fluorescence ratiometric

method of pH measurement [13,22,24,32,40,42,48,55,58,63]. The encapsulation of HPTS in a

suitable nanoparticles for application as pH and ammonia sensor was developed by Amali

et al. based on fluorescent ratiometric method [64,65]. Another widely used fluorescent

indicator for pH measurement is fluorescein because of its high molar absorptivity, large

fluorescence quantum yield and high photostability [66]. Fluorescein and its derivatives
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based optical pH sensors are mostly studied in biological research [67–71].

1.4.2.3 Fluorescence lifetime

Fluorescence lifetime is an intrinsic parameter that is independent to both the concen-

tration of indicator and the intensity of the excitation light, so lifetime-based sensing of pH

can prevent signal fluctuations due to instrumental effects and varying sample background.

However, many luminescent pH indicators have lifetimes of < 10 ns, which causes a sub-

stantial instrumental effort, in terms of precise determination. In addition, the luminescence

background cannot be eliminated by time gating [72]. pH probes with long fluorescence

lifetime are not very common [73]. Berezin et al. synthesized near-infrared pH-sensitive

dyes that can be used for biological applications in physiological range, but they have not so

far been immobilized in a solid support for use as a pH sensor [14]. Goncalves et al. synthe-

sized long-lifetime ruthenium complexes that are visible indicators for fiber-optic lifetime

sensing of pH [74]. Their excited-state lifetimes show a typical sigmoidal variation with pH

in the pH range of 3 - 9 and with a long lifetime in the microseconds range. Dual-lifetime

referencing (DLR) method was applied to lifetime-based pH sensing, because it enables the

pH to be determined by measuring the phase shift or the overall apparent lifetime (in units

of µs) as a function of pH. Bare et al, presented a multicomponent lifetime-based pH sensor

that used dyes with constant lifetimes to generate an pH dependent change in the apparent

sensor lifetime [73]. A red light-excitable dual lifetime referenced optical pH sensor was

developed by Borisov et al. [75]. A fluorescent seminaphthorhodafluor indicator and the

reference, a luminescent inorganic phosphor were both immobilized in hydrogel to use the

DLR method for pH sensing. Wang et al. presented a pH sensor nanoparticles with both

pH indicator dye and a long-lived reference luminophore immobilized [71].
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1.4.3 Other kinds of pH sensors

Recently, stimuli-responsive hydrogels based pH sensors have been widely studied.

With a small alternation of certain environmental parameters, Stimuli-responsive hydrogels

can change their volume significantly. Sensing pH by making use of hydrogel that swell

as a function of pH has attracted substantial interest, because such materials are potentially

quite stable over time and no indicators are needed therefore problems such as leaching or

photobleaching of indicators from the matrix do not exist [72]. The state of art in this field

has been presented by Richter et al. [76]. Figure 1.4 shows how hydrogel polymers can

swell, then undergo phase transitions, as a function of pH.

Figure 1.4. Phase transition behavior of polyelectrolyte hydrogels. Acidic hydrogels (squares) are
ionized by deprotonation in basic solutions, which have an excess of hydroxyl groups. Basic hy-
drogels (circles) swell in acidic solutions due to the ionization of their basic groups by protonation.
Amphiphilic hydrogels (triangles) contain both acidic and basic groups. Therefore they show two
phase transitions.

Polyelectrolyte hydrogels contains weak acidic or basic groups in their structure, which

can be ionized. For example, gels containing acidic groups are deprotonated under ba-

sic condition. The density of negatively charged groups within the network increase, and

generate an adequate amount of counterions inside the gel, there a gel volume increase

is induced due to electrostatic repulsion. In an acidic condition, the acidic groups in the

gels are protonated resulting in a decrease of both the charge density and the amount of
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counterions, thus lead to gel shrinking. Because this is also dependent on the acid-base

equilibrium of a weak acid group in the structure, the phase transition of the gels occurs in

a small range close to the apparent acid dissociation constant, pKa. Richter et al. have de-

veloped a polyelectrolytic hydrogel based pH sensor using the quartz crystal microbalance

techinique [77]. Several groups have developed hydrogel-based pH sensors using bending

plate transducers [78,79]. Principally, the pH sensitive hydrogel is placed in a fixed volume

between a rigid grate, which is permeable for protons, and a bending plate. If the hydrogel

swells the plate deflects resulting in a change of the resistance of the piezo-resistive bridge.

Zhao et al. synthesized a biodegradable pH-responsive hydrogels for controlled drug re-

lease by copolymerization of pH-sensitive poly(L-glutamic acid)(PGA) into the hydrogel

matrix [80].

Resonance energy transfer has also been applied in optical pH sensor development.

Photon upconverting luminescent lanthanide nanorods were used by Sun et al. [81]. The

nanorods upon illumination display visible luminescence. They were immobilized along

with the pH sensitive indicator bromothymol blue (BTB) in a hydrogel matrix. The red

luminescence of the nanorods is reabsorbed by BTB at alkaline conditions where BTB is

blue. However, at acidic conditions, BTB does not cause a strong inner filter effect. Its

long-wave excitation and emission are said to make the sensor well-suited for sensing pH.

Two-dimensional pH imaging is needed for application such as bioturbated sediments

and monitoring complex disease process such as wound healing and tumor metabolism.

These optical pH sensor are still based on fluorescence emission of pH indicators change

upon on pH changes, however the images are readily obtained with light-emitting diode

(LED) or a CCD camera. A few planar optical pH sensor has been developed by immobi-

lization of the most common fluorescent pH sensitive indicator, HPTS, into different thin
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films for diagentic stuides of sediments [27,62,82]. Schreml et al. studied 2D luminescence

imaging pH in vivo by time-domain luminescence imaging of pH sensitive indicator FITC

and a reference ruthenium (II) complex. To create a biocompatible 2D sensor, these dyes

were bound in polyurethane hydrogel [69]. Meier et al. have developed a simultaneous

photographing sensor for oxygen and pH sensing in vivo [83].

1.4.4 Applications

The pH sensors are widely used in chemical and biological applications such as en-

vironmental monitoring, biomedical research, medical application such as blood pH mea-

surement and laboratory pH measurements.

Because optical pH sensors can be easily fabricated for in situ, remote and underground

sensing, they are very useful for environmental monitoring. Jorge et al. developed a

luminescence-based optical fiber chemical sensors for remote monitoring of oxygen, pH

and temperature [84]. Wolfbeis et al. have developed a fiber-optic sensors for monitoring

dissolved carbon dioxide in water sample in 0 - 900 ppm concentration range based on

immobilization of a pH sensitive dye in cellulose films [85]. A gas phase carbon dioxide

sensor was developed by Chu et al. by entrapment of HPTS in sol-gel films [37,86]. Motel-

lier et al. developed a fiber-optical pH sensor and used it for routine in situ measurements

in an underground laboratory devoted to studies in connections with nuclear waste reposi-

tories [59]. Two-dimensional pH imaging was used to measure the pH in sediments [27,62,

82].

Optical sensors have been used for measurement of intracelluar pH inside individual

biological cells [87,88]. Fluorescent indicators for intracelluar pH sensing is reviewed
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by Han et al. [89]. Non-invasive, simultaneous optical monitoring of oxygen and pH

during bacterial cultivation is presented using an integrated dual sensor [90]. Arain et

al. developed integrated fluorescence-based optical sensors for oxygen and pH and their

applications to enzyme screening and monitoring of bacterial respiratory activity [91].

Optical pH sensors have been developed for continuous monitoring of blood pH and

gases (CO2 and O2), which are important parameters in the operation room and intensive

care unit. Since fiber-optic sensor can be easily miniaturized, they can potentially be used

for in vivo measurement of pH, pCO2 and pO2. Many optical sensors for blood pH and gas

measurement have been developed [92–95]. pH sensor based on 2D luminescence imaging

pH in vivo has also been developed [69,83,96,97].

In general, all optical pH sensors, as well as CO2 and NH3 sensors, can be used in mon-

itoring and control of industrial processes. Optical pH sensors for monitoring pH in biore-

actor were described [98,99]. Bultzingslowen et al. developed a carbon dioxide sensor by

immobilization of HPTS in sol-gel films for modified atmosphere packaging applications

[100].
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2. COVALENT BINDING OF FLUORESCEIN TO

POROUS SILICA FOR OPTICAL PH SENSING

2.1 Introduction

2.1.1 Mesoporous silica

A great deal of intensive research has been conducted to obtain high-quality transparent

porous silica thin film for microptics and microelectronics applications [101]. Mesoporous

silica memebranes with high surface area represent a potential material for optical dye

immobilization [102]. In this project, the mesoporous silica used as the material for immo-

bilization of pH sensitive indicator was provided by Dr. Pual L. Bergstrom and Dr. Kumar

L. Vanga. Here, the synthesis and properties of mesoporous silica is briefly introduced as

illustrated in Figure 2.1

Figure 2.1. The schematic illustration of the synthesis of mesoporous silica.
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Mesoporous silicon was first fabricated from a silicon wafer. The fabrication of meso-

porous silicon utilized unmasked boron doped p-type (100) silicon substrate with resistivity

of 0.001 - 0.002 Ω · cm and a thickness of 525 ± 25 µm. The mesoporous silicon mem-

brane was produced by electrochemical anodization of the silicon substrate in ethanoic-

hydrofluoric acid solution with a pore size of about 20 nm diameter. Mesoporous silicon

samples were then thermally oxidized at 950 ◦C to grow a 10 - 15 nm oxide layer on the

sidewalls. As the sidewalls of the pores are in the range of 5 - 10 nm, complete oxidation of

the membrane occurs as silicon is fully consumed produced a full wafer thickness porous

silica membrane that is optically transparent over a wide range of wavelengths (from UV

to near IR) [102]. The mesoporous silicon and mesoporous silica membranes are shown in

Figure 2.2. As shown in the figure, the mesoporous silica is translucent to human eyes. The

top-view and cross-section scanning electron microscopy (SEM) images of mesoporous sil-

icon and mesoporous silica are shown in Figure 2.3.

(a) (b)

Figure 2.2. Optical photographs of mesoporous silicon (a) and mesoporous silica (b). (Reprinted
with permission from ref [102])

Mesoporous silica membranes are very brittle because of high compressive stress and

the thickness of the mesoporous silica is less than 500 µm. For mesoporous silica mem-

branes, at such small dimensions, the side walls of the pore cannot be considered to be

smooth as shown in Figure 2.3, bottom.

It is important to understand the optical properties of the mesoporous silica. The re-

fractive index can be measured and is related to porosity. The porosity of the films was
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(a) (b)

(c) (d)

Figure 2.3. SEM images of porous silicon and porous silica samples. (a and b): top-view and
cross-section SEM images of porous silicon, respectively. (Reprinted with permission from [102]);
(c and d): top-view SEM images of porous silica with scale of 500 nm and 200 nm.
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calculated according to the Lorentz-Lorenz equation [101]:

porosity = 1− n2 − 1

n2
d − 1

(2.1)

where n is the refractive index of the film, and nd = 1.46 is the refractive index of

bulk SiO2. The refractive indices of the films were measured using an elliposometer at

800 nm wavelength and 70◦ incidence, for which the measurement error was as small as

2% [101]. The measured refractive index (n) for porous silica are shown in Figure 2.4.

The porosity of mesoporous silica was calculated using the refractive index of mesoporous

silica, 1.36 at 800 nm. The porosity of mesoporous silica was 24.9% which corresponds to

Dr. Kumar L. Vanga’s result 24% (using Bruggeman Equation) and 27% (obtained from the

SEM image and Image J analysis) [102]. The porosity of mesoporous silicon was between

57.6% and 67% [102]. Compared to mesoporous silicon, the porosity of mesoporous silica

was reduced due to oxidation, which brings two oxygen per silicon atom.

Figure 2.4. The measured refractive index (n) and extinction coefficient (k) of mesoporous silica.
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In this study, a mesoporous silica membrane was used as the solid matrix for pH indi-

cator immobilization because it is relatively transparent and the intensity could be greatly

enhanced because of the large surface area.

2.1.2 Fluorescein

Fluorescein (structure is shown in Table A.1 in the Appendices) was selected as the

pH indicator because of its high fluorescence quantum yield, and excellent photostability

[66]. Fluorescein has four different forms in aqueous solution: cation (acid dissociation

constant, pKa, 2.2), neutral species (pKa, 4.4), monoanion (pKa, 6.7), and dianion, each

with different optical properties [66,103].

The absorption spectra of neutral, monoanionic and dianionic fluorescein in buffer so-

lution are shown in Figure 2.5. The cation has maximum absorption at 437 nm with extinc-

tion coefficient (ε), 53,000 M−1 cm−1 [66]. The neutral species has the weakest absorption

in the visible region, with a maximum peak at 437 nm (ε, 11,000 M−1 cm−1) and a side

maximum at 475 nm (ε, 3,600 M−1 cm−1) [66]. When pH > 4.4, the carboxylic group gets

deprotonated, and fluorescein becomes a monoanion. The monoanion has weak absorption

in the visible region with peaks at 450 nm and 476 nm (ε, 19,000 M−1 cm−1 and 16,000

M−1 cm−1 respectively). When pH > 6.7, both the carboxylic group and the phenol group

get deprotonated, and fluorescein is a dianion. The dianion has the highest and most red-

shifted absorption peak at 495 nm (ε, 72,000 M−1 cm−1), with a shoulder around 471 nm

(ε, 31,000 M−1 cm−1). (Detailed information is shown in the Appendices A.1.1)

The fluorescence quantum yields of fluorescein in different pH solution were measured

using quinine sulfonate as the standard. The fluorescence quantum yields of fluorescein
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in pH 4.25 under 450 nm and 467 nm excitation is 0.17 and 0.26, respectively; and the

fluorescence quantum yield of fluorescein in pH 8.03 under 495 nm excitation is 0.82.

(data are shown in Appendices A.1.1)

Figure 2.5. UV-Vis absorption spectra of three dominate species of fluorescein (2.5 µM) in solution
(IS = 0.120 M). pH 3.21 - neutral species; pH 5.11 - monoanion; pH 7.67 - dianion.

Fluorescein-5-isothiocyanate (FITC) is one of many commercially available fluorescein

derivatives. The structure of FITC is shown in Table A.1. It has the same UV-Vis absorption

and fluorescence properties as fluorescein. The isothiocyanate reactive group of fluorescein

can be used to covalently bind the dye to nucleophiles such as amine groups.

2.1.3 Specific aims of this study

• Covalently bind FITC on the surface of mesoporous silica through surface reaction

with self-assembled monolayer of trichlorosilanes.

• Study the spectral properties and pH sensitivity of FITC in porous silica.
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• Evaluate the potential of FITC bound porous silica as optical pH sensor

2.2 Experimental

2.2.1 Reagents and materials

Reagents:

Toluene, dichloromethane, and 30% hydrogen peroxide (H2O2) were purchased from

Mallinckrode Inc.. 3-aminopropyltriethoxysilane (APTES), triethylamine, and concen-

trated sulfuric acid (H2SO4) were purchased from Sigma-Aldrich. Acetonitrile was pur-

chased from Tedia. Ethanol (200 proof) was purchased from Pharmco-Aaper. The pH

dependent fluorescent dye fluorescein-5-isothiocyanate was purchased from Thermo Sci-

entific. All the chemicals were used as received without additional purification.

Materials:

Quartz slides, glass beads, silicon wafers and porous silica were used as substrates

for dye immobilization. Both quartz slides (1 cm × 1 cm × 0.5mm) and p-type silicon

wafers, 525 ± 25 µm thickness with a resistivity of 0.001-0.002 Ω · cm, were purchased

from University Wafer. The glass beads (3 mm and 2 mm diameter) were purchased from

Fisher Scientific. The transparent porous silica substrate (0.2 mm thickness, ∼10 nm di-

ameter pore size was achieved by complete oxidization of mesoporous silicon membrane

produced by electrochemical anodization of single crystal silicon in ethanoic-hydrofluoric

acid solutions.
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Test solution:

Acetate buffers (pH 3.5 - 5.5) were prepared from acetic acid and sodium acetate solu-

tions. Phosphate buffers (pH 6.0 - 8.0) were prepared from monobasic potassium phosphate

and potassium hydrogen phosphate solutions. The concentration of the buffers were 0.010

M. Potassium chloride was used as an additional electrolyte to adjust ionic strength.

2.2.2 Monolayer preparation

The covalent immobilization of FITC on silica surface was accomplished using a pre-

viously published procedure [104] with modification for this study. Briefly, the substrates

(except porous silica) were cleaned in boiling piraña (solution of 1:4 30% H2O2 and con-

centrated H2SO4), rinsed several times with deionized (DI) water and dried in a stream of

nitrogen. Porous silica samples were used as obtained. The covalent binding of FITC on the

surface of quartz slides, glass beads or inner surface of porous silica was achieved under a

dry nitrogen atmosphere. The freshly cleaned substrates were immersed in APTES solution

(10 mM in dry toluene) for 4 hours. Then, the substrates were removed from the solution,

and rinsed with toluene, dichloromethane, and ethanol several times to remove any physi-

cally absorbed material. Subsequently, the substrates were placed in a solution of triethy-

lamine (36 mM) and FITC (1.2 mM) in dry acetonitrile for 16 hours. After the substrates

were removed from solution, they were rinsed with acetonitrile, ethanol, dichloromethane

and deionized water to remove any physically absorbed material. The schematic synthesis

is shown in Figure 2.6. A control porous silica sample was prepared by the same proce-

dure, but without APTES, to quantify the degree of physisorption of FITC. All prepared

substrates were stored in deionized water before and after testing.
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Figure 2.6. Schematic representation of FITC covalently bound to silica surface.
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2.2.3 Instrumentation

SEM: The SEM images of the mesoporous silica were taken with a field-emission

scanning electron microscope (Hitachi S-4700) after coating 5 nm platinum on sample

surface.

Ellipsometry: Film thickness of FITC coated silicon wafer substrate was measured

by a Variable Angle Spectroscopic Ellipsometer (VASE 32 from J.A. Woollam Co.). The

model fit was performed taking account of 0.5 mm silicon layer and 2 nm of native oxide

present on the silicon wafer.

FTIR: The FTIR spectra of porous silica and FTIC bound porous silica were taken with

a Fourier transform infrared spectrometer (Spectrum one, Perkin Elmer). The substrates

were ground to powder before recording the spectra.

UV-Vis absorption and fluorescence spectra: UV-Vis absorption spectra were taken

with a Lambda 35 UV/Vis Spectrometer (Perkin Elmer) using quartz cuvettes. Fluores-

cence spectra were measured with a SPEX FLUOROLOG 1681 spectrofluorometer. The

porous silica sample was placed in acrylic plastic cuvette filled with buffer solution for the

fluorescence spectra measurements (Figure 2.7). Multiple measurements were recorded at

different parts of the sample in order to report the uniformity of sample. Error estimates

are the standard deviations of these multiple measurements. Fluorescence lifetimes were

acquired with TM-200 LED Strobe Lifetime Spectrofluorometer (PTI). Single exponential

decays were used to fit the fluorescence lifetimes.

The pH meter (Orion 2 star pH benchtop, Thermo Scientific) was calibrated in NIST

(National Institute of Standards and Technology) standard buffers by a three-point calibra-
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tion procedure (pH 4.00, 7.00 and 10.00 ± 0.02). FITC bound substrates were immersed

in buffer solutions for all optical measurements. All experiments were conducted at room

temperature.

Mesoporous silica

Cuvette

Solution

Detector

Lamp

Figure 2.7. Top view of the fluorescence spectra measurement setup.

2.3 Results and Discussion

2.3.1 Confirmation of covalent binding of FITC on substrates surface

2.3.1.1 Substrate color change

The covalent binding of FITC on glass beads and the internal surface of porous silica

were easily confirmed by the change in color. After immobilization of FITC on the sur-

face, the glass beads turned light yellow-green, which is the color of FITC (Figure 2.8, a).

Porous silica was colorless before immobilization (Figure 2.8, b). With FITC chemically

bound on the internal surface, the porous silica sample turned yellow (Figure 2.8, d). The

control sample, which had only physisorbed FITC solution, turned light yellow color in the

solution, but the color was quickly removed by rinsing (Figure 2.8, c).
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(a) (b) (c) (d)

Figure 2.8. Images of substrates before and after reaction. a: images of glass beads untreated
(left) and with FITC covalently bound (right); b: Images of porous silica untreated (left), controlled
physisorbed (middle) and with FITC covalently bound (right) on a white surface.

2.3.1.2 Monolayer quantification

The measured thickness of the monolayer film on a silicon wafer was 3.01 ± 0.09 nm

with a mean square error (MSE) of 1.775 (Figure 2.9), close to expected range for a mono-

layer of FITC and APTES (1.9 - 2.2 nm, through simple estimations of bond distances).

Figure 2.9. Monolayer thickness fitting by elliposometry for FITC bound to silicon wafer surface.

2.3.1.3 FTIR spectrum of porous silica

The FTIR spectrum of porous silica was recorded and is shown in Figure 2.10. The

two characteristic absorption peaks of Si-O-Si at around 1080 cm−1 and 800 cm−1 are the

only two peaks shown in the spectrum, indicating the complete oxidation of porous silicon.

The FTIR spectrum of FITC covalently bound to porous silica (data not shown) matches
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exactly the spectrum of porous silica itself due to the huge excess of SiO2 compared to only

a monolayer of FITC.

Figure 2.10. FTIR spectrum of porous silica substrate.

2.3.2 Fluorescence measurements

2.3.2.1 Fluorescein in buffer solution

In order to interpret the behavior of surface-bound fluorescein, its solution properties

have to be understood. The protolytic equilibrium of the acidic and basic forms of the

phenol groups on fluorescein in buffer solution is :

FOH− 
 FO2− +H+ (2.2)
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where FOH− is fluorescein monoanion, and FO2− is fluorescein dianion. The acid

dissociation constant, pKa, can be calculated using the normalized absorption spectra [30]

as shown in Figure 2.11, Assuming the absorbance of the monoanion and dianion forms of

fluorescein in aqueous phase follow Beer-Lambert’s law:

αFOH− =
A450 − A450

FO2−

A450
FOH− − A450

FO2−
(2.3)

αFO2− =
A491 − A491

FOH−

A491
FO2− − A491

FOH−
(2.4)

where A450 and A491 are the measured absorbance values at 450 nm and 491 nm;

AFOH− andAFO2− are the limiting absorbance values for the monoanion and dianion forms

of fluroscein, respectively. αFOH− and αFO2− are the fraction of fluorescein presents as

monoanion and dianion, respectively. Applying eq 2.3 and eq 2.4, αFOH− and αFO2− can

be plotted as a function of pH (Figure 2.12). At low pH values, αFOH− is equal to 1 and

αFO2− is equal to 0 when all fluorescein is present in monoanion form. Likewise at high pH

values, αFOH− is equal to 0 and αFO2− is equal to 1 when all fluorescein exists in dianion

form. The acid dissociation constant, pKa, of fluorescein can be easily obtained from the

pH value at which αFOH− and αFO2− are equal to 0.50. The pKa of fluorescein in buffer

was found to be 6.52 (IS = 0.030 M), which corresponds to the literature value 6.41 (buffer

0.050 M) [66], 6.36 (IS = 0.1 M) [104]. The slight different in these values is due to the

ionic strength effect.

The fluorescence excitation and emission spectra of fluorescein in buffer solution were

also studied. The protolytic equilibrium of ground and excited states fluorescein is shown
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Figure 2.11. Normalized UV-Vis absorption spectra of fluorescein (2.0 µM) in solution (IS = 0.030
M).

Figure 2.12. Ground state pKa of dissolved fluorescein (2.0 µM) in solution (IS = 0.030 M).
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in Figure 2.13. The pKa of fluorescein shifts in its excited state, so absorption by the

monoanion can result in emission from the dianion excited states. As shown in Figure 2.14,

fluorescein emits at around 515 nm independent of buffer pH. However, in pH 3.21 and pH

4.42 buffer solutions, the emission shows an additional shoulder peak at 550 nm. At high

pH (>7), there is only one emission peak at 515 nm. This indicates that there are different

emitting species in each solution, reflecting the change in pKa of the excited state relative

to ground state fluorescein. At high pH, only the fluorescein dianion exists in both ground

and excited states; so the single emission peak at 515 nm corresponds to the emission of

the dianion excited states. Hence, the emission of monoanion fluorescein excited states is

the other one. At pH 3.21, only neutral species of fluorescein exists, if excited at 437 nm

(the absorption peak of neutral species), the neutral excited state deprotonates rapidly and

forms the monoanion excited state, which emits at 515 nm with a broad shoulder peak at

550 nm.

FOH-* FO2-* + H+

FOH- FO2- + H+

468nm
515 nm,
550 nm
shoulder

491 nm,
468 nm 
shoulder 515nm

pKa*

pKa

Figure 2.13. The protolytic equilibrium of ground and excited state fluorescein.

The normalized fluorescence excitation spectra of fluorescein in buffer are shown in

Figure 2.15. The excited state pK∗
a can be calculated from the fluorescence excitation

spectra as shown in Figure 2.16 using the same method as for the ground state pKa.
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Figure 2.14. Fluorescence excitation (solid line) and emission (dotted line) spectra of fluorescein
(2.5 µM) in solution (IS = 0.120 M). Fixed emission wavelength for excitation spectra were 530
nm (pH 7.45) and 520 nm (pH 5.11 and pH 3.21); Fixed excitation wavelength for emission spectra
were 491 nm (pH 7.45), 468 nm (pH 5.11) and 437 nm (pH 3.21).
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αFOH−∗ =
I468 − I468

FO2−∗

I468
FOH−∗ − I468

FOH2−∗
(2.5)

αFO2−∗ =
I491 − I491

FOH−∗

I491
FO2−∗ − I491

FOH−∗
(2.6)

where I468 and I491 are the measured fluorescence intensity values at 468 nm and 491

nm in the excitation spectra; IFOH−∗ and IFO2−∗ are the limiting intensity values for the

monoanion and dianion forms of fluorescein, respectively. αFOH−∗ and αFO2−∗ are the

fraction of the excited states fluorescein presents as monoanion and dianion, respectively.

Applying eq 2.5 and eq 2.6, αFOH−∗ and αFO2−∗ can be plotted as a function of pH (Figure

2.16). The excited state pK∗
a of fluorescein can be easily obtained from the pH value at

which αFOH−∗ and αFO2−∗ are equal to 0.50. The pK∗
a of fluorescein in buffer was found

to be 5.68 (IS = 0.030 M), much smaller than the ground state pKa, 6.52, at the same ionic

strength.

2.3.2.2 FITC bound on quartz slides

Fluorescence spectra of FITC covalently bound to a quartz slide (as shown in Figure

2.17) are similar to fluorescence spectra of free fluorescein in buffer solution. At pH 7.2,

the most dominant species is the dianion. It emits at 515 nm with excitation peak at 491 nm

(shoulder peak at 468 nm). At pH 4.4, the most dominant species is the monoanion, which

emits at 515 nm with a shoulder peak at 550 nm. The excitation peak for the monoanion is

at 468 nm. As shown in the figure, the fluorescence spectra of immobilized FITC on quartz

slide maintained sensitivity to pH. However, the fluorescence intensity was quite low due
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Figure 2.15. The normalized fluorescence excitation spectra of fluorescein (2.0 µM) in solution (IS
= 0.030 M) with different pH.

Figure 2.16. Excited state pK∗
a of dissolved fluorescein (2.0 µM) in solution (IS = 0.030 M).
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to small amount of FITC exposed to the light and noise level was relatively high (as shown

in Appendices, Figure A.3).

Figure 2.17. Fluorescence excitation (solid lines) and emission (dotted lines) spectra of FITC on
quartz slide in solution (IS = 0.030 M). Fixed emission wavelength for excitation spectra were 520
nm (pH 7.2 and pH 4.4); Fixed excitation wavelength for emission spectra were 491 nm (pH 7.2)
and 468 nm (pH 4.4).

2.3.2.3 FITC bound on glass beads

In order to increase the active surface area of SiO2 relative to the quartz slides, glass

beads with diameter as 2 - 3 mm were used as a substrate for FITC immobilization. The

fluorescence intensity was increased about 22 times compare to FITC on quartz slide (from

8.0 × 103 cps to 1.8 × 105 cps) as shown in Figure 2.18. The fluorescence excitation

spectra of FITC on glass beads surface in different buffer solution was recorded as shown

in Figure 2.19. The excited states pK∗
a value is around pH 5.52 (as shown in Figure A.4 in

Appendices), which is close to excited state pK∗
a in buffer solution, 5.68.
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Figure 2.18. Fluorescence excitation spectra of FITC in different matrices in pH 7.0 solution with
emission wavelength at 530 nm.
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Figure 2.19. Normalized fluorescence excitation spectra of FITC on glass beads in solution (IS =
0.120 M) with emission wavelength at 530 nm.
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2.3.2.4 FITC bound in porous silica

With FITC immobilized on the internal surface of porous silica, the fluorescence inten-

sity was increased 600 times compare to FITC bound on a quartz slide (from 8.0× 103 cps

to 5.4 × 106 cps, as shown in Figure 2.18). The normalized fluorescence excitation spectra

of FITC in porous silica in different buffer are shown in Figure 2.20. FITC was still sensi-

tive to the pH of the buffer solution as it was in buffer solution. The pH sensitive range for

FITC in porous silica in buffer solution (IS = 0.030 M) is pH 4.5 - 7.0 (Figure 2.21, top).

The excited states pK∗
a value is around pH 5.58 (as shown in Figure 2.21, bottom).

Figure 2.20. Normalized fluorescence excitation spectra of FITC in porous silica in solution (IS =
0.030 M) with emission wavelength at 540 nm.
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Figure 2.21. pH sensitive range (top) and pK∗
a (bottom) of FITC in porous silica in solution (IS =

0.030 M). The standard deviation was between 0.014 - 0.062 (n =4).
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2.3.3 Effects of porous silica on FITC fluorescence

2.3.3.1 pK∗
a shift

The apparent pK∗
a of FITC in porous silica (5.58) was smaller (0.1 pH unit) than in

buffer solution (5.68) (Figure 2.16 and 2.21). The apparent pK∗
a shift could indicate either

(i) a change in the acidity of the dye, or (ii) a different H+ activity inside the porous silica

relative to the bulk solution. A change in dye structure is unlikely because fluorescence

excitation and emission spectra of the surface bound dye were identical to the spectra in

bulk solution. A change in H+ activity inside the pores is plausible because of the free

silanol (Si-OH) group on the internal surface of porous silica. Different types of silanol

groups are present on the silica surface. They can form hydrogen bonds with their neigh-

bors either directly or via water molecules (Figure 2.22) [105,106]. These silanol groups

are able to accept and donate protons and form a highly active surface. The surface acidity

of the silanol groups has been studied but is not well defined. A range of pKa values has

been reported for surface silanol groups. Usually two values are found, one in the range of

3.8 - 5.94 and a second in the range of 8.0 - 11.24 [105,107–109]. In our system, unreacted

free amine groups from APTES further complicated buffering by the surface silanols.

The free silanol groups affect dye behavior in the pores of the porous silica by donating

or accepting the protons, effectively acting as an additional buffer. As shown in Figure

2.23, fluorescein on the silica surface does not match ideal acid-base behavior as calculated

using the Henderson-Hasselbalch equation:

pH = pK∗
a + lg

[FO2−]

[FOH−]
(2.7)

54



O O O O O O

H HH H

O

HH

H H

35% 46%

O

H

19%

Dye

Figure 2.22. Schematic representation of silanol groups at the silica surface.

where the value of pK∗
a is 5.58 (the apparent pK∗

a value for FITC in porous silica, ionic

strength of 0.030 M). Additional buffering inside the pores slightly flattens the titration

curves relative to the ideal titration curves.

Figure 2.23. Experimental and ideal behavior of FITC dissociation in porous silica.

In other words, the pH in the pores is different from the pH of the bulk solution. The

dye reports the actual pH inside the pores. Assuming no true shift in the dye pK∗
a, the pH
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inside the pores can be calculated using the following equation [110]:

pH = pK∗
a + lg

Rmin −R
R−Rmax

(2.8)

where, the value of pK∗
a is 5.68 (the apparent pK∗

a value for fluorescein in buffer, ionic

strength of 0.030 M).R is the excitation ratio, I491/I468. The pH calculated by this equation

using excitation ratio is plotted against the bulk solution pH (pH reading from electrode) in

Figure 2.24, a. At pH lower than pK∗
a, pH inside the pores is higher than bulk solution. At

pH higher than pK∗
a, pH inside the pores is lower than bulk solution. This shift reflects the

buffering effect of the free surface silanol groups. To calculate the bulk solution pH, eq 2.8

can be adjusted by adding an empirical parameter, α, for considering the buffering effect

from the silanol groups. From our data, for solution with ionic strength 0.030 M, the value

for α is 1.17, as shown in eq 2.9. The bulk pH from optical sensor using eq 2.9 is plotted

against bulk pH from electrode in Figure 2.24, b.

pH = pK∗
a + α · lg Rmin −R

R−Rmax

(2.9)

2.3.3.2 Ionic strength effects

As a weak acid, the acid dissociation constant of fluorescein is affected by ionic strength

as approximated by the following equation [111]:

∆pKa = pKth
a − pKI

a = 0.512(z2
FO2− − z2

FOH−)
I0.5

1 + 1.6I0.5
(2.10)
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(a) (b)

Figure 2.24. Comparison of pH measurement from optical sensor and pH from electrode. (a): pH
inside pores (from this optical sensor, eq 2.8) vs. bulk pH (from electrode); (b): bulk pH (from this
optical sensor, eq 2.9) and bulk pH (from electrode). The standard deviation was between 0.043 -
0.114 (n = 4).

57



where pKth
a is the true thermodynamic pKa of the dye, zFO2− and zFOH− are the charges

on the dianion and the monoanion form of fluorescein, respectively; I is the ionic strength

of the solution. This relationship arises due to changes in the activity of the ionic species.

The ionic strength dependence of the dye over the observed range (0.030 - 0.120 M) was

studied and the shift of pKa and pK∗
a was shown in Figure 2.25. As ionic strength increases,

the acid dissociation constants of ground state and excited state fluorescein, pKa and pK∗
a,

respectively, decrease. The effect is most pronounced at low ionic strength. For fluorescein,

the shifts are not large; increasing ionic strength from 0.030 M to 0.120 M results in a pKa

shift of 0.13. The thermodynamic ground state pKa and excited state pK∗
a can be calculated

from eq 2.10. Using ∆pKa of 0.21 at IS = 0.030 M, the thermodynamic pKa and pK∗
a were

calculated to be 6.73 and 5.89, which match the calculated literature values, 6.7 [112]and

5.97 [66], respectively (Table 2.1).

Figure 2.25. pKa and pK∗
a of fluorescein in buffer with different ionic strength, calculated from

absorption and fluorescence spectra, respectively.

The ionic strength effect on pK∗
a of FITC in porous silica was also studied. As shown in

Figure 2.26, at low ionic strength, as 0.030 M, the pK∗
a of FITC in porous silica was 5.58.
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At high ionic strength, as 0.080 M and 0.120 M, the pK∗
a of FITC in porous silica were

5.42 and 5.41, respectively. The pK∗
a shift of FITC on porous silica is a little larger than

fluorescein in buffer, suggesting that the surface charges on the internal surface of porous

silica may also influence local ionic strength.

Figure 2.26. pK∗
a of fluorescein in silica in solution with different ionic strength, calculated from

fluorescence spectra.

Table 2.1
The acid dissociation constants of fluorescein and FITC in porous silica.

Thermodynamic values Ionic strength
literature this study 0.030 M 0.080 M 0.120 M

Fluorescein, pKa 6.71 6.73 6.52 6.46 6.40
Fluorescein, pK∗

a 5.972 5.89 5.68 5.58 5.58
FITC in porous silica, pK∗

a 5.79 5.58 5.42 5.41

1.R. Markuszewski, et al., Abstracts of the American Chemical Society 180 (1980) 179-ANYL.
2.R. Sjoback, et al., Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy
51(1995) L7-L21.
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2.3.3.3 Fluorescence lifetimes

The fluorescence lifetimes of fluorescein in buffer solution and in porous silica were

measured. The fluorescence decay was well described in a single exponential component

(Figure 2.27). The fluorescence lifetimes of fluorescein in buffer solution and in porous

silica are listed in Table 2.2.

The lifetime of fluorescein increases with increasing pH in solution. At high pH, 7.93,

the main species in buffer solution was the dianion, and the lifetime of excited dianion

fluorescein was 3.9 ns. At low pH, 4.36, the main species in buffer was the monoanion,

and the lifetime of excited monoanion fluorescein was 3.0 ns; both agree with literature

values [113–115]. The lifetime of the excited state of dianion FITC in porous silica was

slightly shorter compared to free fluorescein in buffer, which were 3.5 ns and 3.9 ns, re-

spectively. At low pH, the fluorescein lifetime of the excited state monoanion FITC in both

mesoporous silica and in solution was almost the same, 2.9 ± 0.1 ns and 3.0 ± 0.1 ns,

respectively.

Table 2.2
Fluorescence lifetime of fluorescein in buffer and FITC in porous silica (IS = 0.030 M).

Sample Excitation, nm Emission, nm Lifetime, ns χ2 pH
Fluorescein 468 515 3.0 ± 0.1 1.057 4.36
Fluorescein 490 515 3.9 ± 0.1 1.054 7.93

FITC in porous silica 468 515 2.9 ± 0.1 1.023 3.48
FITC in porous silica 490 515 3.5 ± 0.1 1.022 7.93
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Figure 2.27. Fluorescence decay curves for fluorescein in buffer and FITC in porous silica. The
solid lines represent the best fits to the data. λex = 468 nm (top); λex = 490 nm (bottom); λem =
515 nm (top and bottom)
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2.3.4 Sensor performance

The excitation ratio of FITC in porous silica in buffer solution is reproducible with

reported pH changes from 3.5 to 7.4 as shown in Figure 2.28. In the pH sensitive range 4.5

- 7.0, the error was small, ± 0.1 pH unit. The greatest source of error appears to be related

to the slow equilibrium time (up to 100 minutes); slow diffusion into small and possibly

non-uniform pores can expose each dye molecule to slightly different pH environment. In

addition, the pore size of the sample might be reduced by the attachment of the fluorescein

single layer (3.01 nm) on the surface, which could cause a stronger diffusion resistance.

Porous silica with larger pore size would enhance the response time and the accuracy of

the sensor. Although larger pores would reduce surface area and thus fluorescence intensity,

intensity is not a limiting factor.

No leaching was found for FITC in porous silica sample after thoroughly washed with

deionized water. The sensor was stable for over 4 months.
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Figure 2.28. Repeatability of the excitation ratio of FITC in porous silica at pH 7.4, 5.4 and 3.5.
The standard deviation was between 0.005 - 0.019 (n=4). Time between each data point at the same
pH was 2 minutes. Time between each buffer solution was 100 minutes.
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2.4 Conclusion

The study shows that fluorescein covalently bound to a silica surface retains pH sensi-

tivity. Mesoporous silica was proved to be a viable matrix for fluorescein immobilization.

Fluorescence excitation spectra were recorded, and the excitation ratio I491/I648 was used

to calculate the pH. The excitation state pK∗
a of fluorescein in porous silica was obtained

through fluorescence excitation spectra as 5.58 (ionic strength at 0.030 M). The excited

state pK∗
a in porous silica shifts down by about 0.1 pH units compared to fluorescein in

buffer solution due to the free silanol groups on silica surface. The ionic strength effect of

the buffer was studied, with increasing ionic strength, the excited state pK∗
a of fluorescein

in both buffer and porous silica decreased. As the ionic strength changes from 0.030 M to

0.0120 M, the pK∗
a value in porous silica changes from 5.58 to 5.41, about 0.17 pH units.

The sensor was most sensitive at pH 4.5 to 7.0, with error less than 0.1 pH unit. After

washing thoroughly, no leaching was detected and the sensor was reproducible and stable

for over 4 month stored in DI water.

2.5 Future work

Mesoporous silica with more uniform and larger pores would be needed for future study

and testing. Equilibrium time would be expected to decrease if pores size of porous silica

is larger. Neutralization of the untreated silanol groups on the silica surface might increase

the sensor sensitivity.
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3. PHYSICAL ENTRAPMENT OF INDICATORS IN

POROUS SILICA THROUGH SOL-GEL PROCESS

FOR PH SENSING

3.1 Introduction

As chemically sensitive optical materials, sol-gel materials have gained great interest

because they are optically transparent, mechanically stable, chemically inert and flexible

for sensor configurations [100]. In addition, the sol-gel process only requires relatively

simple chemistry at low hydrolysis temperature [29]. Hence, sol-gels have been extensively

studied with respect to their applications to chemical sensing of analytes such as H+ [13,

34,35,38,39,51,116], carbon dioxide [37,86,100] and ammonia [29].

3.1.1 the Sol-Gel process

In the sol-gel process, a silica gel is made by hydrolysis of an alkoxide precursor fol-

lowed by condensation of silanol. The sol-gel aged solution can be cast to form thin films.
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The solvent is then evaporated to form a highly porous and three-dimensional network.

Sol-gel films are usually transparent and stable, which provide an inert matrix for immobi-

lization of optical probe molecules [29].

The principle of the sol-gel process is rather simple: a network of an oxide is pro-

gressively built through inorganic polymerization reactions at room or elevated tempera-

ture [117]. Crystalline (e.g., quartz) or amorphous (e.g., glass) materials may be prepared

based on the regularity of the macromolecular structure. The usual molecular precursors

are metallo-organic compound such as alkoxides M(OR)n where M is a metal or a metal-

loid and R is an alkyl group. For example, tetraethylorthosilicate (TEOS), Si(OC2H5)4, is

commonly used in the sol-gel synthesis of silica and glasses. Such chemicals are dispersed

in a solvent (usually organic, e.g., ethyl alcohol) and react according to the well-known

steps in polymer chemistry:

Initiation: the hydrolysis of the alkoxide:

+      H2O +Si(OR)4 HO-Si(OR)3 ROH (3.1)

The reactive bond Si-OH, which is necessary for the continuation of the reaction, is

formed during this step.

Propagation: the condensation of the hydrolyzed species, with formation of bridging

oxygens, occurs according to two possible mechanisms:

oxolation: a dehydration (i.e., the leaving group is H2O)-
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or alcoxolation: a dealcoholation (i.e., the leaving group is ROH)-

Si O
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OR

RO H SiO

OR

OR

OHR Si

OR

OR

RO SiO

OR

OR

OH+ + ROH

(3.3)

At the end, every oxygen is bridging and hence a pure and highly homogeneous oxide

network is obtained.

Silicon alkoxides generally react slowly with water, but the reaction process, hydrolysis

and condensation, can be sped up by acid or base catalysts. The gelation of the precursor

sols can be shortened from 1000 hours to 92 hours by addition of 0.05 M HCl [118].

The rate and extent of the hydrolysis reaction is most influenced by the strength and the

concentration of the catalysts. Different catalysts result in gels with different properties

and microstructures, which can be related to the differences in the catalytic mechanism.

With acidic catalyst, hydrolysis is faster compared to condensation and more open, three-

dimensional structures are formed. In contrast, with base catalyst, condensation is much

faster than hydrolysis, leaving hydrolysis as the rate limiting step. And a much denser and

more colloidal sol-gel is formed [33].
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Between the starting solution and the final solid, several intermediate steps occurs dur-

ing which sols or gels are formed. First, a sol is obtained. As the polymerization reactions

are going on, the particles grow and coalesce to form clusters continuously increasing in

size. After a time, a giant cluster appears, a macromolecule as large as the vessel in which

it was formed. This is a gel, which is a semisolid system comprising two phases, solid

and fluid, embedded in each other and the pores of the solid are of colloidal dimensions

[117].This process is shown in Figure 3.1.

Figure 3.1. Schematic picture of the sol-gel transition. Molecular species grow by polycondensa-
tion (sol) until a giant cluster is formed (gel). Reprinted with permission from ref [117].

The gel strengthens improved as the residual isolated clusters form bonds with the de-

veloping network, which is called aging. The growing number of bonds and the occurrence

of dissolving-reprecipitation reactions make the elastic modulus increase with time. The

gel then reaches the favorable conditions for which it becomes possible to dry it with the

lowest number of cracks.

Sol-gel thin film can be obtained by spin-coating or dip-coating of the aged sols. The

thickness of the thin film can be controlled by the solution viscosity and the spin- or dip-

coating speed [116].

Drying is another essential process that can control the density and porosity of the

sol-gel film, which can be achieved either under normal pressure (microporous xerogrels)

or supercritical conditions (mesoporous aerogels). Drying under normal pressure causes

capillary pressure between the gas and liquid phases on the pore surface. These capillary
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pressure can combine with shrinking force and leads to collapse of the pores in the network,

resulting in low porosity and low surface area. Mesoporous areogels with high porosity,

high surface area and low density can be achieved by supercritical drying (CO2) [119].

Pure silica (when using tetraethoxysilane) contain a large amount of of unreacted sur-

face silanol groups (Si-OH) on the internal surface, which can still go through water con-

densation reaction after the gel is dry, resulting in shrinking and cracking of the films and

limiting their long term stability [120].

Si-OH     +     HO-Si Si-O-Si      +     H2O (3.4)

Several methods have been used to prevent shrinking and the collapse of the pores.

Thermal treatment (500 oC - 800 oC) of silica sol-gels has been used to minimize the

amount of the unreacted surface silanol groups, but the porosity of the sol-gel film was

greatly decreased by the high temperature thermal treatment [120]. The most used approach

to improve the stability of the sol-gel films for chemical sensor membranes is physical en-

trapment of organic polymers into sol-gel pores and addition of organic functional groups

through organo-silane coupling precursors (such as 3-glycidoxypropyltrimethoxysilane,

GPTMS). Adding organo-silane coupling precursors increases flexibility and deceases the

amount of reactive silanol groups on the gel surface, thus directly reduces gel shrinkage

[33].

In this study, the microstructure of the film is a composite of two precursors, ethyl-

triethoxysilane (ETEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS). ETEOS is an

organically modified alkoxysilane with a -C2H5 functional group. During the hydrolysis of

the ethoxy groups with HCl as the catalyst, silanol groups were formed and then condensed
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to form a silicate network. GPTMS is another organically modified alkoxide with an epoxy

ring which can be opened and crosslinked to form a poly(ethylene oxide) chain in certain

condition [38]. The structure of the poly(ethylene oxide) chain is shown in Figure 3.2. The

base catalyst for the hydrolysis of GPTMS, 1-methylimidazole (MI) is also an initiator for

the epoxy ring opening.

Si

O

O

OO

O

Si

O

O

O

O

O--O

Figure 3.2. Structure of GPTMS-derived network after epoxy ring opening.

The thin film was deposited by spin coating, and the thickness of the film was controlled

by the viscosity of the sols, which was controlled by the molar ratio of the precursors and

the solvent, ethanol. The film was cured at various temperature, and pH sensitivity of the

dyes in the sol-gel films were studied.

3.1.2 pH-sensitive indicators information

Two pH-sensitive fluorescent indicators were used in this study, fluorescein-5-(and-6)-

sulfonic acid trisodium salt (FS) and 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt

(HPTS). Their structures are shown in Table A.1. FS is one of the fluorescein derivatives,

with the same absorption and fluorescence properties and pH sensitivity as fluorescein (see

Chapter 2). The sulfonate groups were used for ion-pair with ion-pair agents.

HPTS is a fluorescent pH indicator with large fluorescence quantum yield, high photo-
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stability, in addition, its pKa value at 7.3 [13,32] makes it quite suitable for pH measurement

in biological research and environment monitoring. HPTS is composed of four fused aro-

matic rings, three sulfonate groups and a hydroxyl group. The sulfonate groups provide

water solubility and the hydroxy group provides pH sensitivity. HTPS is highly photo-

acidic, which means it is more acidic in its electronically excited state. The pK∗
a of excited

photo-acidic compounds is usually 6-7 pH unit lower than pKa in the ground state [121].

As for HPTS, pK∗
a in solution is ∼ 1.0 [28].

The absorption spectra of HPTS in solution vary with pH of the solution. In acidic

condition, where HPTS is protonated, the absorption maximum is near 400 nm. As the pH

of the solution becomes more basic and HPTS is deprotonated, a peak at 450 nm grows

in. The UV-Vis absorption spectra of HPTS in solution is shown in Figure 3.3. The molar

extinction coefficients were calculated based on experimental data: ε400
HPTS = 24,000 cm−1

M−1; ε450
HPTS = 2,330 cm−1 M−1; ε400

PTS− = 6,340 cm−1 M−1; ε450
PTS− = 23,800 cm−1 M−1.

Figure 3.3. UV-Vis absorption spectra of HPTS (0.99 µM) in solution (IS = 0.030 M).
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Regardless of solution pH, HPTS emits near 510 nm and this emission is from the

excited deprotonated form. Due to its low pK∗
a, HPTS is deprotonated upon excitation

and emission before protonation of the excited state may occur. In ethanol solution, the

deprotonation of the excited state HPTS is forbidden because there are no water molecules

for hydrogen bonding with the protons. Thus the emission of the excited state protonated

HPTS can be observed at ∼ 425 nm. The fluorescence excitation and emission spectra of

HPTS in both ethanol and aqueous solution with different pH are shown in Figure 3.4.

The excitation wavelength of the protonated and deprotonated forms of HPTS are dif-

ferent, and therefore the excitation spectra of HPTS is still dependent upon solution pH

as shown in Figure 3.5. The peak maximum of the deprotonated form from the excita-

tion spectra is red shifted to 467 nm compared to 450 nm in absorption spectra. This shift

probably is due to the electronic vibration in the excited state.

These dual excitation spectra of both FS and HPTS allow the ratiometric method of pH

determination to overcome the possible leaching problem in sol-gel films. Both indicators

were physically entrapped in sol-gel films. To eliminate the leaching from the film, both

indicators were ion-paired with a common cationic surfactant cetyltrimethylammonium

bromide (CTAB) before entrapment.

3.1.3 Specific aims of this study

• Synthesize sol-gel thin films with two precursors ETEOS and GPTMS and study the

morphology of the thin films.

• Physically entrap both pH indicators FS and HPTS in sol-gel films and eliminate the

leaching problem.
72



Figure 3.4. Fluorescence spectra of HPTS (0.99 µM) in ethanol (top) and solution pH 5.32 (middle)
and pH 9.97 (bottom).

• Study the spectra behavior of FS and HPTS in sol-gel films and compare with that in

buffer solution.

• Evaluate the potential of both FS and HPTS in sol-gel films as pH sensors
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Figure 3.5. Fluorescence excitation spectra of HPTS (0.99 µM) in solution (IS = 0.030 M)with
different pH with emission wavelength at 510 nm.

3.2 Experimental

3.2.1 Reagents and materials

Ethyltriethoxysilane (ETEOS), (3-glycidoxypropyl)trimethoxysilane (GPTMS), 1-

methylimidazole (MI), NH3 and 8-hydroxypyrene-1,3,6-trisulfonic acid, trisodium salt

(HPTS) were purchased from Aldrich. Fluorescein-5-(and-6)-sulfonic acid, trisodium salt

(FS) was purchased from Invitrogen (Life Technologies Corporation). The ion-pair agent

hexadecyltrimethylammonium bromide (CTAB) was purchased from Acros Organics. All

chemicals were used as received without further purification.

Silicon wafers and Quartz wafers were purchased from University wafers (South

Boston, MA). Quartz wafers were cut to 1 cm × 1 cm pieces before film deposition.
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Phosphate buffer and acetate buffer solutions of desired pH and ionic strength were pre-

pared from NaH2PO4, Na2HPO4 and CH3COONa, CH3COOH, respectively, with sodium

chloride as the background electrolyte. The pH of phosphate buffer solution was measured

using an Accumet model 15 pH meter (Fisher Scientific).

3.2.2 Synthesis of ion-pairs

The indicator ion-pairs were fabricated using a previous published procedure [13] with

modification for this study. Briefly, the ion pair was synthesized by dissolving 0.76 mmol of

CTAB in 25 mL of DI water at around 50 ◦C. Subsequently, 0.25 mmol of indicator HPTS

(or 0.76 mmol FS) that was previously dissolved in 25 mL of DI water was added to the

CTAB solution. The precipitate of ion pairs (HPTS-CTAB, or FS-CTAB) was filtered and

dried in the oven at 70 ◦C for 12 hours before use. The chemical structures of HPTS-CTAB

and FS-CTAB are shown in Figure 3.6.

SO3
--O3S

-O3S
OH

N
=

O OHO

C OH

O

-O3S

a b

c

Figure 3.6. Chemical structure of ion-pairs. a: HPTS-CTAB; b: FS-CTAB; c: CTAB cation.
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3.2.3 Synthesis of sol-gel films

The sol-gel films synthesis employed a previous published procedure [13]. The sensor

films were prepared from a mixture of ETEOS- and GPTMS-derived sols. The ETEOS-

based sol were prepared by mixing ETEOS, 0.1 M HCl and ethanol in a 1:0.007:6.25 molar

ratio. The GPTMS-based sol was prepared by mixing GPTMS, MI (or NH3), dionized wa-

ter and ethanol in 1:0.69:4:6.25 molar ratio. The GPTMS-ETEOS hydrid sol was prepared

by mixing the two separate sols at 1:1 molar ratio. FS-CTAB (or HPTS-CTAB) was dis-

solved in ethanol (2.5 mM) before making the sols. The final silane/dye ratio was 1000.

The final mixture was aged for at least 3 days under ambient conditions.

The effect of different precursors was studied by changing the ratio of GPTMS- and

ETEOS-derived sols. Sol-gel solutions were made of the following GPTMS-ETEOS ratios:

1-0, 2-1, 1-1, 1-2 and 0-1. The effect of GPTMS:ETEOS ratio was studied only with HPTS

immobilized in these sol-gel films.

Sensor film was fabricated by spin-coating onto silicon wafers and quartz slides using a

spinner; the spin speed was 4000 rpm (rounds per minute) and the spin time was 1 minute.

To produce films with different thickness, the sol-gel solution was diluted 2-fold, 5-fold

and 10-fold before spin-coating.

After deposition, the films were cured at 140 ◦C, 200 ◦C, 250 ◦C, 300 ◦C and 400 ◦C for

4 hours, 4 hours, 4 hours, 3 hours and 3 hours, respectively. All sensor films were uniform

and crack-free. They were soaked in phosphate buffer (pH 6.8) over night before testing.

All experiments were performed at room temperature.
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3.2.4 Instrumentation

UV-Vis absorption and fluorescence spectra: Sol-gel films were immersed in buffer

solutions for all optical measurements. UV-Vis absorption spectra were recorded with a

Lambda 35 UV/Vis spectrometer (PerkinElmer Inc). Fluorescence spectra were measured

with a SPEX FLUOROLOG 1681 Spectrometer. The top view of fluorescence measure-

ment set-up is shown in Figure 3.7. Fluorescence lifetimes were acquired with TM-200

LED strobe Lifetime Spectrofluorometer (PTI). A single exponential decay was used to fit

the fluorescence lifetime.

Sol-gel film

Cuvette

Solution

Detector

Lamp

Figure 3.7. The top view of fluorescence spectra measurement set-up.

FTIR: The FTIR spectra of ion pairs and sol-gel films were taken with a Fourier trans-

form infrared spectrometer (Spectrum one, Perkin Elmer). The substrates were ground to

powder before recording the spectra.

Elliposometry: Silicon wafers were used as the substrates for sol-gel film deposition

for film thickness measurements. Film thickness of sol-gel films were measured by a Vari-

able Angle Spectroscopic Ellipsometer (VASE 32 from J.A. Woollam Co.). The model

fit was performed with taking account of 0.5 mm silicon layer and 2 nm of native oxide

present on the silicon wafer.
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SEM: The SEM image of the sol-gel films on silicon wafers were taken with a field-

emission scanning electron microscope (Hitachi S-4700) after coating 5 nm platinum on

sample surface.

3.3 Results and discussion

3.3.1 Sol-gel film characterization

3.3.1.1 Catalyst effects

With NH3 as the catalyst for GPTMS-derived sols, the reaction rate increased a lot

compared to MI. Within 3 days, all sol-gel precursor solutions became a solid. So, the sol-

gel precursor solution was aged for 2 days before spin-coating. However, these thin films

with dyes immobilized did not respond to pH, with only protonated excitation peak at 400

nm showed even in basic solution (pH 11.00).

3.3.1.2 Morphology

It is important that the thin film are uniform as heterogeneity has an impact on a number

of factors, such as the optical transparency and mechanical properties of the materials.

It is also important in mass production of these materials as reproducibility is a critical

factor in sensor material development. The sol-gel thin films were optically transparent as

judged by the eye, which indicates there was no phase separation. SEM was performed

to evaluate alternations in morphology of the films as a result of phase separation (Figure
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3.8). The films did not show any features when imaged with SEM, which demonstrates

a homogenerous material at the micrometer scale. However, from previously published

research, heterogeneity in sol-gels can occur at a very fine level examined by Atomic force

microscopy and nanofeatures were observed at lower Z-range (0 - 10 nm for height) [38].

Figure 3.8. SEM image of sol-gel thin film.

3.3.1.3 Film thickness

There were 4 different sol-gel thin films developed, S1, S2, S5 and S10. S1 was made

by the original sol-gel solution. S2, S5, and S10 were made by the sol-gel solution 2, 5, 10

times diluted from the original solution. The thickness of S1, S2, S5, and S10 were 1294

nm, 472 nm, 145 nm and 54 nm, respectively, as listed in Table 3.1. The generated and

Experimental data of thin film optical constants for thickness fitting of S1, S2, S5, S10 are

shown in Figure A.7.
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Table 3.1
Film thickness of different sol-gel thin films.

Film S1 S2 S5 S10
Thickness, nm 1294 ± 12.1 471.9 ± 1.3 162.5 ± 0.8 64.3 ± 1.6

MSE (should <10) 46.13 5.773 8.218 2.984

3.3.1.4 FTIR spectra

The FTIR spectrum of the synthesized sol-gel film is shown in and compared with the

FTIR spectrum of the mesoporous silica substrate in Figure 3.9. The Mesoporous silica

was made from the full oxidation of porous silicon, thus it is pure SiO2 and had a much

simple FTIR spectra with the only two characteristic peaks of the Si-O-Si bonds, centered

at around 800 cm−1 and 1080 cm−1. The FTIR spectra of sol-gel film is much more com-

plicated because it contains organic functional groups. The absorption peak around 2900

cm−1 is due to the aliphatic groups in the precursor GPTMS. The absorption peak for C-O

stretching at 1100 cm−1 is not clearly evident because it overlaps with Si-O-Si stretch peak.

The small peak at 950 cm−1 is due to the free silanol group Si-OH on the surface of silica

network.

3.3.2 Fluorescent spectral behavior of indicator ion-pairs in sol-gel films

Different cure temperatures were applied to the dye immobilized sol-gel films. For sol-

gel films cured at higher temperature than 140 ◦C, the indicators in sol-gel films lost its

sensitivity to pH probably due to the collapse of the pores. For the one cured at 140 ◦C for

4 hours, the dyes in the sol-gel film were still sensitive to pH.

UV-Vis absorption and fluorescence spectra of dyes in sol-gel films were recorded. UV-
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Figure 3.9. FTIR spectra of mesoporous silica and sol-gel films.

Vis absorption spectra are not shown and discussed here because the absorption spectra

have low intensity. Due to the thickness of the films are in the range of 60 nm to 1400 nm,

only a small amount of dyes are immobilized in the thin films, resulting in the low intensity

of the absorption spectra. In addition, the background absorbance from the blank sol-gel

films made the signal to noise level even lower and the dyes in sol-gel films not suitable for

absorbance measurements. In contrast, fluorescence spectra with high sensitivity are not

affected by the small amount of indicators in sol-gel films. In addition, the blank sol-gel

films are not fluorescent. Thus the fluorescence spectra behavior of dyes in sol-gel films

were studied and compared with their spectra in solution.
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3.3.2.1 FS-CTAB in sol-gel films

The fluorescence spectral behavior of fluorescein in buffer was discussed in Chapter

2. To summarize here, FS has the same behavior as fluorescein. The excitation peaks

for monoanion and dianion forms of FS are at 467 nm and 490 nm, respectively. Both

monoanion and dianion forms of FS have single emission peak at 515 nm corresponding to

the excited state dianion form. The pKa values of ground state and excited state fluorescein

in buffer (IS = 0.030 M) are 6.52 (Figure 2.12) and 5.68 (Figure 2.16), respectively.

Fluorescence spectra of FS in sol-gel film in buffer solution were recorded and shown

in Figure 3.10. A red shift of both the emission and the dianion excitation peaks in sol-

gel film compared to in buffer solution (Figure 2.14) were observed. The fluorescence

emission peak of FS in sol-gel film was at 528 nm, a shift of 13 nm to the longer wave-

length. The maximum dianion excitation peak was at 510 nm, a shift of 20 nm to the

longer wavelength. As with fluorescein in buffer solution, two emission peaks for excited

state monoanionic and dianionic FS were observed, 520 nm with 550 nm shoulder peak

and 528 nm, respectively.

The normalized fluorescence excitation spectra of fluorescein in sol-gel films are shown

in Figure 3.11, top. The acid dissociation constant of excited state, pK∗
a, was measured for

FS thin film using the fluorescence excitation spectra with the same method used in Chapter

2. Fractions of both monoanion and dianion FS in sol-gel films were plotted again the

solution pH. The pK∗
a was defined when the fractions of monoanion and dianion are both

equal to 0.50 as shown in Figure 3.11, bottom. The pK∗
a of fluorescein immobilized sol-gel

(thickness, 162 nm) in buffer solution with ionic strength at 0.050 M is 4.22. Compared to

solution phase pK∗
a (5.68), it is smaller by about 1.5 pH units. The pH sensitive range for
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Figure 3.10. Fluorescence excitation and emission spectra of FS-CTAB in sol-gel film at different
pH(IS = 0.030 M).

this one is pH 3.5 - 5.5 as shown in Figure 3.12.

3.3.2.2 HPTS-CTAB in sol-gel films

The fluorescence spectra of HPTS in buffer solution was discussed in the introduction

part of this chapter. Fluorescence excitation spectra of HPTS in buffer are sensitive to pH

of the solution as shown in Figure 3.5. Because of its photoacidity, HPTS has only one

emission peak in aqueous solution with different pH. The protolytic equilibrium of ground
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Figure 3.11. Normalized fluorescence excitation spectra of FS-CTAB in sol-gel film (top) and pK∗
a

of FS-CTAB in sol-gel film (IS = 0.050 M) (bottom). The emission wavelength was 540 nm.

and excited state HPTS is shown in Figure 3.13.

The ground state pKa of HPTS in buffer was also calculated as 7.30 from absorption

spectra and 7.35 from fluorescence spectra as shown in Figure 3.14.
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Figure 3.12. pH sensitive ranges of FS and HPTS in sol-gel film. (GPTMS-EGEOS 1-1, film
thickness 1300 nm, and IS = 0.050 M)

Figure 3.13. The protolytic equilibrium of ground and excited state HPTS.

Fluorescence spectra of HPTS immobilized in sol-gel films in buffer solution were

recorded and are shown in Figure 3.15, and compared with fluorescence spectra of HPTS

in buffer solution and ethanol. In pH 7.50 buffer, when excited at 400 nm, dissolved HPTS

has only one emission peak at 510 nm, while immobilized HPTS has two emission peaks,

420 nm (with 435 nm shoulder peak) and 510 nm. This peak at 420 nm corresponds to

the emission peak of HPTS in ethanol. This indicates a decrease in acidity of immobilized

HPTS in the excited states. This effect has also been observed by other researchers in their
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Figure 3.14. pKa of HPTS (0.628 µM) in buffer (IS = 0.030 M) from both fluorescence and ab-
sorption spectra.

studies [30,47,48,122].

One of the possible explanations of this phenomenon is the hydrogen bonding effect.

Because of enhanced hydrogen bonding would stabilize the excited state of the depro-

tonated form with respect to the protonated form and make prototropic dissociation eas-

ier. However, in the sol-gel films, the hydrophobic environment makes insufficient water

molecules available to hydrate and stabilize the dissociated protons from the excited acidic

HPTS leading to the strong recombination of the H+ and the excited state PTS− [30]. This

decrease in photoacidity of HPTS in sol-gel films may also be a result of the ionic interac-

tion between HPTS and the surfactant, CTAB, which reduces the electron donating proper-

ties of the triply sulfonate pyrene ring to the hydroxy group, hence stabilizing the acid form

of HPTS and reducing its photoacidity [48]. It is also possible that the hydrogel groups on

the pyrene condensed with the silanol groups during the spl-gel process and its acidic site

was blocked, and showed the emission of the excited state HPTS* upon excitation.
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The normalized fluorescence excitation spectra of HPTS immobilized sol-gel film in

buffer solution are shown in Figure 3.16,top. There are two excitation peaks of HPTS im-

mobilized sol-gel thin films, same with HPTS in solution. The excitation spectral behavior

of HPTS after immobilized in sol-gel film is sensitive to pH. The pKa value of HPTS im-

mobilized sol-gel film is calculated as 5.78 (IS = 0.030 M, as shown in Figure 3.16, bottom,

which is much smaller than the pKa value of HPTS in solution (7.35). The pH sensitive

range of HPTS in sol-gel film is around pH 4.5 - 7.0 as shown in Figure 3.12.

3.3.3 pKa shift

3.3.3.1 Sol-gel matrix effect

For both FS and HPTS, a shift of pK∗
a and pKa to the lower pH value was observed

when they were immobilized in sol-gel films. To summarize, the pK∗
a and pKa values in

buffer and sol-gel film (IS = 0.030 M, except for FS in sol-gel film, IS = 0.050 M) for FS

and HPTS are 5.68 and 4.22, and 7.35 and 5.78, respectively.

The shift of pKa values of indicators immobilized in solid matrix was also observed in

other studies [13,30,47]. The increase in acidity of the immobilized dyes in sol-gel films

can be explained largely by the sol-gel environment.

The microstructure of the sol-gel films are porous silica. There are free silanol (Si-OH)

group on the internal surface of the silica network, which can accept and donate protons

and act as a substantial buffer as discussed in Chapter 2. Different types of silanol groups

are present on the silica surface as shown in Figure 2.22. A range of pKa values has been

reported for surface silanol groups. Usually two values are found, one in the range of 3.8 -
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5.94 and a second of 8.0 - 11.24 [105,107–109]. In porous silica project, some amount of the

internal surface of porous silica was reacted and covalently bound to FITC. So fewer free

silanol groups are available for accepting or donating protons, which confirms that there

is only a small decrease in pKa value when FITC was covalently bound in porous silica

compared to in buffer solution, 5.58 and 5.68, respectively. However, in sol-gel films, the

internal surface of the sol-gel network was not modified, all the free silanol groups were

able to accept and donate protons when placed in buffer solution. Thus it is not surprising

that a larger pKa shift was observed when FS was physically entrapped in sol-gel films. It is

also possible as the micellar interface is densely charged with the positive ammonium ions,

a higher concentration of protons is required to reach a pKa situation. Thus the apparent

pKa become even smaller [123].

3.3.3.2 Ionic strength effect

The pKa value of the indicator in solution is affected by the ionic strength as discussed

in Chapter 2. As the ionic strength of the solution increased, a decrease in pKa value is

expected (eq 2.10). The ionic strength effect on the pKa values of FS and HPTS in both

solution and sol-gel films are plotted in Figure 3.17. As shown in the figure, the pKa of

indicators in solution decrease with increasing ionic strength. In contrast to the shift of

indicators in solution, an opposite behavior in pKa shift of both indicators in sol-gel films

was observed. As the solution ionic strength increases, the apparent pKa values of FS and

HPTS in sol-gel films also increase. For FS in sol-gel films (film thickness, 1300 nm), in

solution with ionic strength at 0.050 M, 0.100 M and 0.200 M, the pK∗
a values were 4.22,

4.53 and 4.58, respectively. For HPTS in sol-gel films, in solution with ionic strength at

0.003 M, 0.030 M and 0.300 M, the pKa values were 4.84, 5.40 and 6.43, respectively.
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A possible explanation to this opposite pKa shift of indicators in sol-gel films is the

swelling effect. Although swelling is impossible for some oxide gels such as SiO2 [124,

125], the poly(ethylene oxide) groups from the GPTMS precursor stayed in the sol-gel film,

and they can swell in solution. The sol-gel films swell more in high ionic strength solution

than in low ionic strength solutions. When the sol-gel films swell, the pores size increased.

More aqueous solution gets into the pores, the indicators immobilized will experiences a

less hydrophobic environments and they can be less affected by the free silanol groups on

the surface.

3.3.3.3 Film thickness effect

In addition to the pKa shift caused by the matrix and ionic strength effects, a pKa shift

related to the film thickness was observed. The pK∗
a of FS in sol-gel films decreases with

decreasing the film thickness as shown in Figure 3.18. The thickness of these four sol-gel

films, S1, S2, S5 and S10 were 1294 nm, 472 nm, 145 nm and 54 nm, and the pK∗
a values

for four sol-gel films in buffer solution with ionic strength as 0.100 M were 4.76, 4.52,

4.22, and 4.14, respectively.

The reason for this pKa shift related to the film thickness is unclear. One possibility

is that the pore size of the network might be different with different thickness. Pores with

different sizes may have different accessibility for aqueous solutions. However, the sizes

of the pores were not evident in the SEM images we obtained.

The opposite effect of film thickness was observed for HPTS in sol-gel films as shown

in Figure 3.19. The reason for this ins unclear.
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3.3.3.4 GPTMS-ETEOS ratio effect

The effect of two precursor GPTMS-ETEOS ratio on pK∗
a of HPTS in these sol-gel

films was studied. As shown in Figure 3.20, the pK∗
a of immobilized HTPS increased with

increased of precursor GPTMS. As for the sol-gel films prepared by only ETEOS, no pH

sensitivity of immobilized HPTS was observed (data not shown). The precursor GPTMS

is a polar precursor; it provides a hydrophilic matrix, which promotes proton permeability.

With increase of proton permeability, the sol-gel matrix prepared with more GPTMS are

less hydrophobic, and more like an aqueous environment. Thus the pKa of immobilized

HPTS was more similar to its pKa values in solution.

3.3.4 Fluorescence lifetime data

The fluorescence lifetimes of FS and HPTS in both solution and sol-gel films were

measured. The fluorescence decay was well described by a single exponential component.

Fluorescence decay of FS and HPTS in solution and sol-gel film with pH 6.7 and 7.01,

respectively, are shown in Figure 3.21. Fluorescence lifetimes of dissolved dyes and im-

mobilized dyes in buffer solution and ethanol are listed in Table 3.2. The excited state

lifetime of both protonated and deprotonated species decreased in thin films compared to

bulk solution.

For FS in solution, the fluorescence lifetime decreased from 4.2 ns to 2.8 ns as solution

pH decrease from 6.65 to 4.41. Ryder et al reported the fluorescence lifetime of fluorescein

in pH 7.8 buffer solution was 4.1 ns [113], which matches with our data. As the pH of

solution decrease from 6.7 to 3.2, the dominant species in solution changes from dianion

90



to monoanion. As the quantum yield of the excited state monoanion is much smaller than

the excited state dianion (0.26 and 0.82, respectively), which means there are more radia-

tionless pathways for the relaxation of excited state monoanion. From eq 1.12 and eq 1.13,

adding radiationless pathways, increases knr, thus deceases quantum yield and lifetime.

The fluorescence lifetime of FS in sol-gel films was shorter than in buffer solution as

in more basic solution, 3.3 ns as compared to 4.2 ns. However, the fluorescence lifetime of

FS in sol-gel film is independent of solution pH, with an average of 3.3 ns. This unchange

lifetime upon changing of solution pH is due to the pKa shift of FS in sol-gel films. As

the pKa of FS in sol-gel films is about 4.22 (IS = 0.050 M), in the pH range of 4.41 - 6.65,

the dominant species in solution is still dianion, thus it is not surprising that there was no

change in its lifetime.

The excited state lifetime of protonated HPTS, decreased to 1.9 ns compared to HPTS∗

in ethanol, which was 4.0 ns. The excited state lifetime of deprotonated HPTS, PTS−∗,

decreased to 4.1 ns, compared to PTS−∗ in buffer solution, which was 5.5 ns [126,127].

The decrease of fluorescent lifetimes reflects the restricted mobility of indicators inside

sol-gel pores.

3.3.5 Sensor performance

The equilibrium time of the sensor has been examined using t90 (as time to 90% of

total response). A rapid response of fluorescence excitation spectra occurred for dyes in

sol-gel films when changed buffer solutions. Taking HPTS immobilized sol-gel films as an

example: for thin films formed with the original precursor solutions with (thickness = 1300
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Table 3.2
Fluorescence lifetimes of fluorescent dyes in solution and sol-gel thin films.

Name Excitation, nm Emission, nm Lifetime, ns χ2 pH
FS in solution 468 515 2.8 ± 0.1 1.063 4.41
FS in solution 490 515 3.9 ± 0.1 1.049 5.57
FS in solution 490 515 4.2 ± 0.1 1.054 6.65
FS in sol-gel 468 530 3.2 ± 0.1 1.000 4.41
FS in sol-gel 505 530 3.4 ± 0.0 0.9543 5.57
FS in sol-gel 505 530 3.3 ± 0.0 0.9679 6.65

HPTS in ethanol 400 435 4.0 ± 0.0 1.079 \
HPTS in solution 415 510 5.4 ± 0.1 1.026 4.13
HPTS in solution 470 510 5.5 ± 0.1 0.9928 7.01
HPTS in sol-gel 400 440 1.9 ± 0.1 0.9417 3.30
HPTS in sol-gel 400 510 4.1 ± 0.1 0.8539 3.30
HPTS in sol-gel 470 510 4.0 ± 0.1 0.9336 7.01

nm, it took about 8 minutes to reach equilibrium, as for the thin films formed with 2 times

diluted precursor solutions (thickness = 470 nm), the equilibrium time was shortened to 5

minutes. The result is shown in Figure 3.22.

Both FS and HPTS immobilized sol-gel films were studied to investigate the extent of

leaching of indicators from the pores. The thin films were placed in a cuvette filled with

buffer solution (pH = 6.8, IS = 0.100 M) for a few hours up to a week. Then the thin films

was removed and the fluorescence spectra of the leftover buffer solution was recorded. No

fluorescence was observed indicating that no indicators were leached out. (data not shown).
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Figure 3.15. Fluorescence spectra of HPTS (0.99 µM) in ethanol (top), sol-gel film at, pH 7.91
(middle) and solution, pH 8.53 (bottom).
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Figure 3.16. Normalized fluorescence excitation spectra of HPTS-CTAB in sol-gel films (top) and
pKa of HPTS-CTAB in sol-gel film (bottom)(IS = 0.030 M). The emission wavelength was 520 nm.
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Figure 3.17. pK∗
a of FS and pKa of HPTS in solution and sol-gel films with different ionic strengths.

Figure 3.18. pK∗
a of FS-CTAB in sol-gel films with different thickness in buffer solution (IS = 0.100

M).
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Figure 3.19. pKa of HPTS-CTAB in sol-gel films with different thickness in buffer solution (IS =
0.100 M).

Figure 3.20. pKa of HPTS in sol-gel films with different GPTMS-ETEOS ratios.
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Figure 3.21. Fluorescence decay curves for FS and HPTS in buffer and sol-gel films. The solid
lines represent the best fits to the data. (top): FS in buffer and sol-gel films, with λex = 467 nm and
λem = 530 nm; (bottom): HPTS in buffer and sol-gel films, with λex = 470 nm and λem = 510 nm.
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Figure 3.22. Equilibrium time of HPTS immobilized sol-gel films in solution (IS = 0.030 M).
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3.4 Conclusion

Two pH dependent fluorescence dyes, FS and HPTS were immobilized in sol-gel thin

film through physical entrapment for pH sensing. The sol-gel films were synthesized from

the hydrolysis of two precursors, ETEOS and GPTMS with HCl and MI as the catalyst,

respectively. The sol-gel solution was spin coated on the surface of a 1 cm × 1 cm quartz

slide to form a thin layer with thickness in the range of 64 nm to 1300 nm, which can be

controlled with the concentration of the precursors in the starting solution.

Fluorescence spectra of indicators in sol-gel film were recorded and compared with

that in solution phase. For FS in sol-gel films, there is a red shift of the excitation and

emission peak of dianion FS compared to FS in solution, 490 nm to 510 nm, respectively.

For HPTS, the excitation spectra remained the same as in buffer solution. However,the

appearance of fluorescence emission peak 425 nm, which is the emission of the excited

state protonated HPTS at pH » pKa indicated a decrease of photoacidity of HPTS in sol-gel

films, which might be the result of the relatively hydrophobic sol-gel environment or the

permanent protonation of the hydroxy group during the sol-gel process. Nevertheless, the

fluorescence excitation spectra of both indicators in sol-gel films retained pH sensitivity.

The pKa values of FS and HPTS in sol-gel films were both shifted to the lower pH

region compared to those in solution, 4.22 (GPTMS-ETEOS 1-1, film thickness 1300 nm,

and IS = 0.050 M) and 5.68 (IS = 0.030 M), and 4.78 ( GPTMS-ETEOS 1-1, film thickness

of 1300 nm, and IS = 0.050 M) and 7.35 (IS = 0.030 M), respectively. This shift is due to

the sol-gel environment, as there are free silanol (Si-OH) groups on the internal surfaces of

the silica network, which can act as an additional buffer. The positively charged ammonium

group from the ion-pair reagent could further enhance this shift. The ionic strength effect
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on pKa values of indicators in sol-gel films was opposite to that of indicators in solution.

With increasing ionic strength, the pKa values of both FS and HPTS in sol-gel films both

increased. Compared to the fluorescence lifetime in aqueous solution, the lifetime of both

indicators in sol-gel thin film were shorter, indicating restricted mobility in side pores.

No leaching of indicators from the sol-gel film was observed. The short response time

(less than 5 minute) and great reproducibility made it a good candidate for pH sensing.

3.5 Future work

The morphology and network structure of the sol-gel film was not fully studied. In the

future, transmission electron microscopy (TEM) could be used to study the pore size of the

sol-gel films and gas absorption method could be used to study the inner surface area of the

sol-gel films.
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4. SPECTRAL BEHAVIORS AND PH

SENSITIVITY OF INDICATORS IMMOBILIZED IN

HYDROGEL

4.1 Introduction

4.1.1 Hydrogel

Hydrogels are distinct three-dimensional macromolecular cross-linked networks of hy-

drophilic homopolymer or copolymers with the capability of imbibing a significant amount

of aqueous solvent or a physiological liquid [76,128,129]. When placed in aqueous solution,

hydrogel matrices tend to absorb a large volume of water and swell. This swelling ability

in aqueous medium makes hydrogel an ideal material in many applications in biological

such as drug delivery, immobilization of proteins and peptides.

Hydrogels crosslinked together either physically (entranglement, crystallites) or chem-

ically (tie-points, junctions) to keep the networks insoluble in water. For a chemically

crosslinked hydrogel, all polymer chains are crosslinked to each other by covalent bonds,
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water content

polymer chains

crosslinks

Figure 4.1. Illustration of crosslinked hydrogel structure.

which means that this type of hydrogel can be consider as one molecule independent

on the size of the initial monomers. For this reason, hydrogel are often called infinite

large molecules or supermacromolecules with no concept of molecular weight [130]. A

schematic of the structure of a hydrogel crosslinked network is shown in Figure 4.1.

Hydrogels can be classified by their charge, preparation method or their network struc-

ture. Based on the nature of side groups, hydrogels can be either neutral or ionic. In

neutral hydrogel, the driving force for swelling is attributed to the water-polymer contribu-

tion [131]. The interaction between the charged groups on the polymer and the free ions in

the solution also affect the swelling behavior of the ionic hydrogels. Ionic hydrogels con-

taining ionic groups, such as carboxylic acid groups, can absorb more water than neutral

types because of their increased hydrophilicity and the repulsion between the deprotonated

groups on the network structure.

Hydrogels can be classified as superporous, macroporous, microporous, or nonporous
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based on their network structures[128]. Superporous hydrogels have high porosity with an

interconnected open-cell structure, and most water molecules absorbed into superporous

hydrogels are free. Macroporous hydrogels have varying porosity with closed-cell struc-

tures (0.1 - 1 µm), and most absorbed water molecules are bound. Microporous hydrogels

also have a range of porosities with smaller closed-cell structures (0.01 - 0.1 µm). Non-

porous hydrogels do not have a porous network.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Unreacted functionality 

Chain loop 
Dangling chain end 

Chain entanglements 

Figure 4.2. Illustration of chain entanglements and network defects that can form during crosslink-
ing. M̄c is the average of molecular weight of the oligomers, and ξ is the mesh size of the hydrogel.

Hydrogel networks may include both permanent junctions and semipermanent junc-

tions, such as chain entanglements as shown in Figure 4.2. When chains become entangled

during the crosslinking process, effective crosslinks are formed in and around the perma-
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nent junctions. These entanglements and other defects such as chain loops and dangling

ends formed during the crosslinking process reduce the effective average molecular weight

between crosslinks.

Polyethylene glycol (PEG) is one of the most extensively studied hydrogels because it

presents outstanding properties, e.g. hydrophilicity, biocompatibility, nonbiodegradability

[132]. For PEG hydrogels, the most common synthetic route is the free-radical crosslinking

polymerization of functional PEG molecules, such as PEG diacrylate (PEGDA). The radi-

cals may be generated from thermal energy, redox reactions or photo initiation. These free

radicals propagate through unsaturated vinyl bonds on the PEG macromolecule monomer

and chain polymerization occurs [133]. Properties of the PEG hydrogel such as swelling,

elastic modulus and transport of solutes are highly affected by the pore size and crosslink

density of the hydrogel, which are closely related to the conditions of hydrogel formation,

such as polymerization methods, precursor percentages and monomer to free radical ratio.

Properties of PEG hydrogel, such as average molecular weight between two adjacent

crosslinks, mesh size and swelling ratio are studied to better interpret the network structure.

The average molecular weight between two adjacent crosslinks (M̄c) is determined us-

ing the Peppas-Merrill model, following the formula given below [134]:

1

M̄c

=
2

M̄n

−
( ῡ
V1

)[ln(1− υ2,s) + υ2,s + χ1υ
2
2,s]

υ2,r[(
υ2,s
υ2,r

)
1
3 − 1

2
(υ2,s
υ2,r

)]
(4.1)

where M̄n is the average molecular weight of PEG oligomers, ῡ is the specific volume

of PEGDA in its amorphous state (0.893 cm3/g), V1 is the molar volume of the solvent (18

cm3/mol for water), χ1 is the Flory-Huggins’ polymer-solvent interaction parameter (0.426
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for PEG-water system), V1 is the molar volume of the solvent (18 cm3/mol for water), υ2,s

is the polymer volume fraction in the swollen state, and υ2,r is the polymer fraction in the

gel.

Mesh size ξ of the hydrogel is calculated by using the following formula [134]:

ξ = (r̄2
0)

1
2υ

− 1
3

2,s (4.2)

(r̄2
0) = l2[2

M̄c

Mr

]Cn (4.3)

Where (r̄2
0)

1
2 is the root mean square end to end distance of the polymer in its free state,

l is the carbon-carbon bond length (0.154 nm), Cn is the rigidity factor of polymer (4 for

PEG) and Mr is the molecular weight of repeating units (44 g/mol for PEG).

Swelling ratio, Qm, is calculated by using the following formula:

Qm =
Ms

M0

(4.4)

Where Ms and M0 are weight of hydrogel in its swollen and dry state, respectively.

Hydrogels can absorb a large amount of water, which is one of its most studied charac-

teristics. The swelling of the hydrogel is controlled by both the osmotic pressure of water

and the elastic nature of the hydrogel chains. When a hydrogel is immersed in an aque-

ous solution, the chains is forced apart by the osmotic pressure of water, and hydrogel is

expanded in all directions equally. Along with the hydrogel chains is pushed apart by the
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osmotic force, it is also restricted by the elastic nature of the crosslinks. The hydrogels

reach to a state of equilibrium swelling when both forces driven by the osmotic pressure

and the elastic nature of the crosslinks are equal [135].

∆Fosmotic = ∆Felastic (4.5)

And the amount of water that hydrogel can absorbed during swelling process is propor-

tional to pore size of the hydrogel.The pore size of the hydrogels can be altered by the ratio

of the solvent (water) and precursor (monomer).

Hydrogel materials have many specific properties that make them attractive for a wide

range of applications. Due to their high water content, stability in aqueous media, tunable

chemical and physical network structure and biocompatibility, they have been widely used

in biomedical applications, such as contact lenses [136], tissue engineering [134,137] and

drug carriers [80,138–140]. Hydrogels may exhibit dramatic volume changes in response

to specific small alteration of certain environmental parameters, such as temperature, pH

[57,141–143], electric field or specific ions, which makes them useful as sensors of these

variables.

Several types of hydrogel based pH sensors have been developed. Polyelectrolyte hy-

drogels comprise weak acidic or basic groups, which can be ionized. The protonation and

deprotonation of these groups at different pH conditions can lead to a different volume of

hydrogel. Richter, et al. [144] and Zhao et al. [80] have developed pH sensors based on

this phase transition behavior of polyeletrolytic hydrogels. Lee, et al. [142] developed

a hydrogel pH sensor based on the tunable optical response by measuring the diffraction

wavelength shift of a hydrogel in different pH solutions. Fluorescent indicators have been
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covalently bound to hydrogel matrix to measure the surrounding pH based on fluorescence

intensity changes [57] or ratiometric methods [42,54,55,82,145].

4.1.2 pH sensitive indicators

Several pH indicators are used in this project to observe their spectral behavior and pH

sensitivity after immobilized in hydrogel with covalent binding and physical entrapment.

FS is a fluorescein derivative, with the same absorption and fluorescence properties and

pH sensitivity as fluorescein (see Chapter 2). HPTS is a commonly used pH indicator with

a pKa value at 7.35 (IS = 0.030 M). The absorption and fluorescence spectra of HPTS in

aqueous solution were discussed in Chapter 3. These two indicators was immobilized in

a hydrogel matrix with physical entrapment. They were ion-paired with a commonly used

surfactant CTAB to prevent leaching as discussed in Chapter 3.

Another derivative of pyrene, 6-8-dihydroxypyrene-1,3-disulfonic acid, disodium salt

(DHPDS) was used. DHPDS have most of the advantageous properties of HPTS including

excellent water solubility due to the sulfonate group, high quantum yield, lack of toxicity

and one of the most important one ratiometric properties [28]. However, the stability of

DHPDS is lower compared to HPTS. Because the structure of DHPDS includes two hy-

droxyl groups, it has two pKa values (7.33 and 8.53 [146]) and (7.03 ± 0.02 and 9.05 ±

0.02 [55]).

A naphthalene derivative, 2,7-dihydroxynaphthalene-3,6-disulfonic acid disodium salt

(DHNDS) was selected because its pH sensitivity in the high pH range. To our knowledge,

DHNDS has not been immobilized in any solid matrix to work as pH sensors.
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Cresol red (CR) is commonly used pH indicator for spectrophotometric determination

of fresh water pH with a pKa, 8.2 [7] or 8.29 [8]. This indicator is not fluorescent, so the

pH determination with cresol red is based on absorption. CR has not been immobilized in

solid support as pH sensors.

These three indicators, DHPDS, DHNDS, and CR (see Table A.1 for structures) are

selected as pH indicators for immobilization in hydrogel not only because they exhibit pH

sensitivity but also all of them have two hydroxy groups. One hydroxy group can react with

methacrylic anhydride (MA) to form a methacryloyl analog in order to covalently bind in

the hydrogel matrix and meanwhile, the other hydroxy groups retain its pH sensitivity.

The absorption and fluorescence spectral behavior of these three indicators are pre-

sented below.

4.1.2.1 DHPDS

The UV-Vis absorption spectra of the pyrene derivative, DHPDS, in ethanol and differ-

ent pH buffer solutions are shown in Figure 4.3. In both ethanol and pH 2.50 solution, both

hydroxyl groups on pyrene ring are protonated. The absorption peak is located at 400 nm.

In really basic solution, pH 12.00, both hydroxyl groups are deprotonated, and an absorp-

tion peak occurs at 486 nm. At pH 7.98, most of the DHPDS exists as monoanion with

only one hydroxyl group deprotonated, and the absorption peak falls in between, 460 nm

with a shoulder peak at 410 nm.

A scheme of protolytic equilibrium of DHPDS in buffer solution is shown in Figure

4.4. DHPDS exists in three forms in buffer solution: neutral, monoanion and dianion. In
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Figure 4.3. UV-Vis absorption spectra of DHPDS (4.43 µM) in ethanol and different pH buffer
solution.

Figure 4.4. Protolytic equilibrium of DHPDS in buffer.

aqueous solution, the excitation and emission wavelengths for the neutral species of DH-

PDS are 400 nm and 454 nm, respectively. The emission wavelength in buffer is red shifted

by 10 nm compared to in ethanol (444 nm). The excitation and emission wavelengths for

the monoanion are 467 nm and 502 nm, respectively. As for the dianion, the excitation and

emission wavelengths are 484 nm (with a shoulder peak at 467 nm) and 502 nm, respec-

tively. The fluorescence excitation and emission spectra of DHPDS in both ethanol and
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aqueous solution are shown in Figure 4.5.

The pKa values of DHPDS in buffer were calculated using the same method as pre-

sented in Chapter 2 using both absorption and fluorescence excitation spectra of DHPDS

in buffer (Figure A.8, top and bottom, respectively). DHPDS has two hydroxyl groups

thus two pKa values. As shown in Figure 4.6, pKa,1 and pKa,2 calculated from absorption

spectra are 7.03 and 9.14 (IS = 0.030 M), respectively, which match the literature data, 7.03

± 0.02 and 9.05 ± 0.02, respectively [55]. pKa,1 and pKa,2 calculated from fluorescence

excitation spectra are 6.75 and 8.90 (IS = 0.030 M), respectively. The difference for pKa

values from absorption spectra and fluorescence spectra is due to the difference in quantum

yields.

4.1.2.2 DHNDS

The absorption spectra of the naphthalenene derivative, DHNDS, in both ethanol and

aqueous solution are shown in Figure 4.7. In ethanol and slightly acidic solution, pH 6.78,

DHNDS remains protonated and has a weak absorption at 340 nm and broad peak centered

at 300 nm. In basic solution, pH 11.13, DHNDS is deprotonated and has two absorption

peaks at 270 nm and 358 nm (relative low absorbance).

The fluorescence spectra of DHNDS in both ethanol and aqueous solution are shown

in Figure 4.8. In ethanol, DHNDS has only one emission peak at 380 nm, which is the

emission of excited state protonated form of DHNDS. In aqueous solution, DHNDS also

only has one emission peak, but located at 465 nm, which is the emission of excited state

deprotonated form of DHNDS. At pH 10.78, the excitation peak is at 365 nm, which should

be the absorption peak of deprotonated form of DHNDS. At pH 3.76, the excitation peak
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is at 336 nm, which should be the absorption peak of the protonated form of DHNDS.

Only one pKa value of DHNDS was calculated based on the normalized absorption and

fluorescence excitation spectra (as shown in Appendices, Figure A.9), despite that there are

two hydroxy groups in its structure. It might be because after the first hydroxyl group is

deprotonated, it is really hard to dissociate the second one, which make the second pKa

value really large number, out of this pH range. The calculated pKa value for DHNDS

in buffer solution is 8.85 and 8.70, from absorption spectra and fluorescence excitation

spectra, respectively, as shown in Figure 4.9.

The pKa value for DHNDS is not available in the literature. For similar compounds, the

pKa value of 2,7-dihydroxynaphthalene is listed as 9.14 [147] and 2-naphthol-6-sulfonate

is listed as 9.16 [148]. And the excited state pK∗
a of 2-naphthol-6-sulfonate is listed as 1.7

[148].

DHNDS is not very stable in basic solution, it turns blue and loses a large amount of

its fluorescence as shown in Figure 4.10. In 0.16 M NaOH solution, under continuing

illumination, DHNDS lost its fluorescence completely within 4 hours. In pH 10.78 buffer

solution, the fluorescence also decreases, but without illumination, the decrease rate is

slower. In acidic condition (0.8 M acetic acid solution), the fluorescence of DHNDS is

more stable, the fluorescence intensity stayed unchanged for a day,and the solution did not

turn blue.

This change can also be confirmed from the absorption spectra (Figure 4.11). The

absorbance peak at 358 nm in basic solution decreased and a new absorbance peak at 600

nm showed up, which conformed the color change of the solution.

2-hydroxynaphthalene-3,6-disulfonate (HNDS) is a similar compound as DHNDS with
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only one hydroxy group. The absorption and fluorescence spectra of HNDS were studied

and we expected the spectra behavior of DHNDS covalently bound in hydrogel to be similar

to HNDS because both have only one hydroxy group. The fluorescence spectra of HNDS

in buffer are shown in Figure 4.12. HNDS behaves similar with DHNDS, single emission

peak at 460 nm. In pH 11.04 solution, it exists as monoanion, the excitation peaks are at 310

nm and 370 nm. In pH 7.28 solution, it exists as protonated neutral species, the excitation

peaks are at 290 nm and 340 nm. The pKa value of HNDS in buffer was calculated as 8.92

based on fluorescence excitation spectra.

4.1.2.3 CR

The UV-Vis absorption spectra of cresol red in buffer solution (IS = 0.100 M) is shown

in Figure 4.13. Cresol red has two absorption peaks at 434 nm and 575 nm for protonated

and deprotonated forms, respectively. The absorbance values of these two peaks shifts

according to pH. The pKa value of cresol red in buffer (IS = 0.100 M) is 8.23 as shown in

Figure 4.14, which agrees with literature values, 8.2 [7] or 8.29 [8]. The small shift is due

to the ionic strength effect.

4.1.3 Specific aims of this study

• Synthesize PEG hydrogels using both free radical initiator and redox initiation sys-

tem.

• Characterize hydrogel properties, such as pores sizes and swelling ratio related to the

percentage of precursors in the starting solution.
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• Immobilize pH indicators in hydrogel through physical entrapment and covalent

binding methods.

• Study and compare the spectral behavior of different indicators in both solution and

hydrogel.

• Evaluate the potential of indicators immobilized in hydrogel as pH sensors.
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Figure 4.5. Fluorescence excitation and emission spectra of DHPDS (1.0 µM) in ethanol and
different pH solution.
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Figure 4.6. pKa values of DHPDS in solution (IS = 0.030 M) from absorption spectra (top) and
fluorescence excitation spectra (bottom).

115



Figure 4.7. UV-Vis absorption spectra of DHNDS (20 µM) in both solution and ethanol.
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Figure 4.8. Fluorescence spectra of DHNDS (20.0 µM) in ethanol(top), pH 3.76 solution (middle)
and pH 10.78 solution (bottom).
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Figure 4.9. pKa values of DHNDS in solution (IS = 0.030 M) from both absorption and fluorescence
excitation spectra.

Figure 4.10. Fluorescence intensity change of DHNDS in different solutions in 1 day.
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Figure 4.11. UV-Vis absorption spectra of DHNDS in different solutions after 1 day.
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Figure 4.12. Fluorescence spectra of HNDS (10.5 µM) in buffer solution. Top: pH 11.04; bottom:
pH 7.28.
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Figure 4.13. UV-Vis absorption spectra of cresol red (14.9 µM) in buffer (IS = 0.100 M).

Figure 4.14. pKa (bottom) of cresol red in solution (IS = 0.100 M).

121



4.2 Experimental

4.2.1 Reagents and materials

Cresol red (CR), sulfuric acid (H2SO4), sodium metabisulfite (Na2S2O5), 2,7-

dihydroxynaphthalene-3,6-disulfonic acid disodium salt (DHNDS), 8-hydroxypyrene-

1,3,6-trisulfonic acid trisodium salt (HPTS), free radical initiator azobisisobutyronitrile

(AIBN), dimethyl formamide (DMF), deuterium oxide (D2O) and poly(ethylene glycol)

diacrylate (PEGDA) with an average molecular weight of 700 were purchased from Sigma-

Aldrich. Potassium persulfate (K2S2O8, KPS), ferrous sulfate (FeSO4), sodium hydro-

gen phosphate (Na2HPO4), monobasic sodium phosphate (NaH2PO4), sodium carbonate

(Na2CO3), sodium bicarbonate (NaHCO3), potassium carbonate (K2CO3), sodium chloride

(NaCl) and dimethylformamide were purchased from Fisher. Methacrylic anhydride (MA)

was purchased from Alfa Aesar. 6,8-dihydroxypyrene-1,3-disulfonic acid, disodium salt

(DHPDS) was purchased from Molecule probes. The ion pair reagent hexadecyltrimethyl-

ammonium bromide (CTAB) was purchased from Acros Organics. All chemicals were

used as received without further purification.

Phosphate buffer was prepared with monobasic sodium phosphate and sodium hydro-

gen phosphate solutions. Carbonate buffer was prepared with sodium carbonate and sodium

bicarbonate solutions. The formal concentration of the buffer was 0.010 M and sodium

chloride was used as the background electrolyte to adjust the ionic strength of the buffer

solution to the desired strength, typically 0.100 M.

122



4.2.2 Synthesis of hydrogels

4.2.2.1 Synthesis of methacryloyl-analogs

In order to covalently bind dyes into hydrogel, methacryloy-analogs were fabricated

using a previous published procedure [42] with modifications for this study. Briefly, the

indicator cresol red (92.3 mg) was dissolved in DMF (10 mL) in a 25 mL reaction vessel.

Potassium carbonate (1 g) and methacrylic anhydride (1:1 eq., 36 µL) were added. The

vessel was stopped and placed in a 70 oC oil bath to react overnight with stirring. The

cooled mixture was filtered. The solvent was removed from the filtrate in a rotary evapora-

tor to yield the solid product methacryloyloxy-cresol red (MA-CR). 6-methacryloloxy-8-

hydroxypyrene-1,3-trisulfonate (MA-HPDS) or 2-methcryloloxy-7-hydroxynaphthalene-

3,6-disulfonate (MA-HNDS) were synthesized in an analogous manner, substituting DH-

PDS or DHNDS for CR in the first step. The reactions are depicted in Figure 4.15.

4.2.2.2 Synthesis of PEG hydrogels

PEG hydrogels were synthesized with both free radical initiator and redox initiation

system. Both polymerization reactions need to be conducted under oxygen free environ-

ment. For free radical initiators, the reaction needs to be conducted at elevated temperature

and requires reaction time of several hours. On the other hand, polymerization by redox

initiation system can be done at room temperature and the reaction is completed within 30

minutes. Details of these two polymerization reactions are described below. Polymeriza-

tion with the redox initiation system was used as the main method for hydrogel synthesis

with indicators because it can be conducted at room temperature and require less time
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compared to free radical initiator. Hydrogel synthesis with free radical initiator was only

conducted for physically entrapment of indicator ion-pairs FS-CTAB and HPTS-CTAB,

because these indicators ion-pairs are insoluble in water (which is solvent for synthesis

with redox initiation system) but soluble in DMF, which was the solvent for free radical

polymerization.

Synthesis with free radical initiator:

Polymer precursor solution was prepared by combining 400 µL of PEGDA, 1000 µL of

DMF and 1.1 mg of AIBN. The precursor solution was bubbled with nitrogen for 1 hour to

remove oxygen. In the meantime, an aluminum box (1 cm × 1 cm × 0.5 cm) covered with

another piece of aluminum foil was placed in a small vial (as shown in Figure 4.16). The

empty reaction vial was flushed with nitrogen for 1 hour to remove oxygen as well. The

precursor solution was injected to the reaction vial using a syringe. The reaction vial was

placed in an 70 ◦C oil bath and was bubbled nitrogen for 6 hours. After polymerization, the

HPDS-PEG layer was peeled from the aluminum foil box and washed in deionized water

for a few hours. This step served to both hydrate the matrix and remove any unbound dye.

Figure 4.16. Reaction setup for hydrogel synthesis with free radical initiator.

Synthesis with redox initiation system:
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The redox initiation is based on bimolecular reactions involving electron transfer mech-

anisms such as decomposition of peroxides into initiating radicals. The reaction can be

illustrated as follows:

A+R−O −O −R′ → RO ·+−OR
′
+ A+ (4.6)

where A is the reducing agent (electron donor) and ROOR′ is the peroxide (electron

acceptor).

In this study, we used a decomposition of a persulfate (potassium persulfate) [149] by

the ferrous ion:

S

O

O

O + Fe2+S

O

O

O S

O

O

OO O S

O

O

OO + + Fe3+

electron acceptor electron donor ion-radical

O

(4.7)

Side reactions are possible in the presence of sufficient quantities of reducing ions:

S

O

O

OO + Fe2+ SO42- + Fe3+

(4.8)

The polymerization reaction of the PEG hydrogel was initiated by the previous pub-

lished redox initiation system [54], which is a mixture of KPS, Na2S2O5 and FeSO4 solu-
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Figure 4.17. Teflon mold and cover for hydrogel synthesis with redox initiation system.

tions. A series of monomer solution with different percentage (4.9% - 15.5%, see Table

4.2) of PEGDA were used to form hydrogel with different properties. The monomer so-

lution was bubbled with nitrogen for 15 minutes to remove oxygen and then immersed in

an ice-water bath for 5 minutes. To the cooled monomer solution was added the redox

initiation solution. The cold solution was then mixed by shaking in the ice-water bath for

30 seconds and immediately cast into a teflon mold (1.3 cm × 2.5 cm × 0.5 mm, as shown

in Figure 4.17) and covered by another teflon piece in a sealed polyethylene bag (Ziploc,

S. C. Johnson & Son, Racine, WI). Nitrogen gas was flowed into the bag for 1 hour and

the bag remained sealed. The reaction was left on for 1 - 2 hours. The hydrogel film was

washed off from the Teflon mold and immersed in DI water for several days in order to

remove the unreacted salt from the redox initiation solution. The hydrogels were stored in

DI water.

4.2.2.3 Physical entrapment of indicator ion-pairs in hydrogel

Two indicators, FS and HPTS, were incorporated into ion-pairs in order to physically

entrap them into hydrogels. The synthesis of indicator ion-pairs HPTS-CTAB and FS-

CTAB was discussed in Chapter 3. The stock solution of HPTS-CTAB and FS-CTAB

(1.0 mM) in DMF was prepared. The 9.8% polymer precursor solution was used to for
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indicator ion-pair entrapment. 100 µL of HPTS-CTAB or FS-CTAB stock solution was

used to substitute DMF in the first step. The rest of the procedures were the same as the

PEG hydrogel synthesis with the free radical initiator AIBN. After reaction, the indicator

entrapped hydrogels were immersed in DI water for several days in order to let the non-

trapped indicator leach out. The soaking solutions were intensely green indicating large

leaching of non-trapped indicators. After several days, no dyes were leaching out, and

the soaking solution was clear. The color change of dye immobilized hydrogels was not

significant due to small amount of dyes entrapped into hydrogels.

4.2.2.4 Covalent bound of indicator in hydrogel

To covalently bind indicator in hydrogel matrix, the 9.8% of monomer solution was

used by substituting 100 µL of DI water with 100 µL MA-CR, MA-HPDS or MA-HNDS

(4.0 mM). The rest of the procedures were the same as PEG hydrogel synthesis with the

redox initiation system. After reaction, the indicator covalently bound hydrogels (CR-

PEG, HPDS-PEG, or HNDS-PEG) were immersed in DI water in order to let the unbound

indicator and salt from the redox initiation system leach out. Compared to dye physically

entrapped system, leaching even at the beginning is negligible. An intense yellow color

for CR-PEG hydrogel was observed. HPDS-PEG and HNDS-PEG was transparent and

colorless.
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4.2.3 Characterization and Instrumentation

FTIR: The successful synthesis of methacryloyl-analogs (MA-CR, MA-HPDS and

MA-HNDS), PEG hydrogel and CR-PEG hydrogel were confirmed by FTIR spectra. The

PEG and CR-PEG hydrogel were dried and ground into powder and the FTIR spectra were

then obtained with a fourier transform infrared spectrometer (Spectrum one, Perkin Elmer).

NMR: 1H proton NMR spectra of indicators and methacryloyl-analogs were taken with

a NMR wide-bore spectrometer (Varian 400MHz), and D2O was used as solvent.

SEM: The hydrogel samples were quickly frozen in liquid nitrogen and then freeze-

dried in a Sharp Freeze-110 (aapptec) under vacuum at -108 oC for 3 days until all water

was sublimed. The dry hydrogel samples were coated with 5 nm Pt for interior morphology

observation with a field-emission scanning electron microscopy (Hitachi S-4700). The

experiments were performed at a low accelerating voltage (15kv), especially suitable for

imaging the surface detail of low-density materials.

UV-Vis: UV-Vis absorption spectra were measured with a Lambda 35 UV/Vis Spec-

trometer (Perkin Elmer). The hydrogel films were placed in a Quartz cuvette filled with

buffer solution for absorption spectra measurement as shown in Figure 4.18.

Fluorescence: Fluorescence spectra were measured with a SPEX FLUOROLOG 1681

Spectrometer with setup shown in Figure 4.18. Fluorescence lifetimes were acquired with

TM-200 LED strobe Lifetime Spectrofluorometer (PTI). A single exponential decay was

used to fit the fluorescence lifetime.

Images: Images of hydrogel in different buffer solution were taken using a Nikon

COOLPIX S520c camera.
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cuvette
buffer solution

hydrogel

absorption detectorlamp

fluorescence detector

Figure 4.18. UV-Vis Absorption and fluorescence measurement set-up.

Swelling: After synthesis, the hydrogel was immersed in DI water for several days to

remove unbound indicators and unreacted salt and to let the swelling of the hydrogel reach

equilibrium. The mass of the swollen hydrogels was measured after removing the surface

water using filter paper. The mass of freeze-dried hydrogels was measured. The swelling

ratio was calculated as the ratio of the mass of hydrogel in the swollen and dry states.

The pH meter (Orion 2 star pH benchtop, Thermo Scientific) was calibrated in NIST

(National Institute of Standards and Technology) standard buffer by a three-point calibra-

tion procedure (pH 4.00, 7.00 and 10.00 ± 0.02). All the measurements were conducted at

room temperature.

4.3 Results and Discussion

4.3.1 Properties of PEG hydrogels

PEG hydrogels properties such as swelling ratio (Qm), average molecular weight be-

tween the adjacent crosslinks (Mc) and the network mesh size (ξ) were studied.
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4.3.1.1 Swelling ratio

In this study, the structural properties of the PEG hydrogel were controlled by varying

the precursor percentages (v/V, from 4.9% to 15.3%) during polymerization. The swelling

ratios of PEG hydrogels with different precursor percentages were calculated using eq

4.4. Increasing the precursor percentage in the starting solution produced a decrease in

the swelling ratio of the hydrogel. As shown in Figure 4.19, the precursor percentage in-

creases from 4.9% to 15.3%, and the swelling ratio decreases from 50 to 7.1. The 4.9%

and 7.5% PEG hydrogels with the highest swelling ratio, 50 and 31, respectively, were

extremely pliable and showed poor mechanical integrity. The 9.8% PEG hydrogel with

swelling ratio, 11.8, was robust, possessing an adequate balance between strength and flex-

ibility. The 15.3% PEG hydrogel with swelling ratio, 7.1 was relatively hard and brittle. So

9.8% PEG hydrogel was chosen for indicator immobilization.

Figure 4.19. Swelling ratio of PEG hydrogels of different precursor percentages in DI water.
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Figure 4.20 shows the SEM images of the corresponding freeze-dried PEG hydrogels.

As anticipated, the pore size and density of hydrogels were highly correlated with the

precursor percentages. Hydrogels with 4.9% of precursor exhibited a pore size of around

100 µm, while those of 15.3% displayed a pore size of around 10 µm.

The swelling ratio of PEG hydrogels mainly depends on the characteristics of their

network structure. A compact network structure due to a high crosslinking density causes

a reduction in water uptake capacity due to decreased pore volume.

The incorporation of charged groups to the network structure introduces a dominant

driving force for swelling due to the inherent electrostatic repulsion between network

charges. The media pH was not expected to affect the swelling behavior of the PEG hy-

drogels because PEG hydrogel do not contain charged groups. The swelling ratios of PEG

hydrogels with different precursor percentages in different standard pH solutions (pHy-

drion Buffers) with approximate ionic strength of 0.55 M, are shown in Table 4.1. There

was no change of swelling ratio upon changing the pH of solution.

Table 4.1
Swelling ratios of PEG hydrogels in different pH solution (IS = 0.55 M).

Precursor percentage
pH 7.5% 9.8% 15.3%

4.00 ± 0.02 13.2 ± 0.4 9.4 ± 0.6 6.6 ± 0.2
7.00 ± 0.02 14.2 ± 0.3 9.2 ± 0.3 6.9 ± 0.1

10.00 ± 0.02 14.1 ± 0.9 9.8 ± 0.3 6.8 ± 0.9

A decreased swelling ratio in buffer solution compared to DI water was observed. How-

ever, it was not a real decrease of swelling ratio in buffer solution but was attributed to salts

in the buffer. The ionic strength of standard buffer solutions were very high. When hy-

drogels were placed in buffer solution, the salt diffused into the network of the hydrogels.

When the hydrogel was freeze dried, water was sublimed from the hydrogel, however, the
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salt stayed. The swelling ratio was calculated using eq 4.4; the mass of dry hydrogel ap-

peared to increase because of the salt left in it. So the calculated swelling ratio decreased.

The calculated swelling ratio against the concentration of the soaking solution (KCl so-

lution) was also studied. As expected, the calculated swelling ratio decreased when the

concentration of the soaking solution increased as shown in Figure A.10.

4.3.1.2 Structural properties

The average molecular weight between adjacent crosslinks (M̄c) was calculated using

eq 4.1, and υ2,s was estimated with the swelling ratio of the hydrogels and υ2,r was used

with the percentage of the precursors in the gel. The network mesh size (ξ) of these PEG

hydrogels were calculated using eq 4.2. These values are given in Table 4.2. The average

molecular weight between the adjacent crosslinks, M̄c, decreased from 334 g/mol to 245

g/mol with increasing precursor percentages from 4.9% to 15.3%. When chains become

entangled during the crosslinking process, effective crosslinks are formed in and around the

permanent junctions. These entanglements reduce the effective average molecular weight

between crosslinks. Similarly, the mesh size ξ of the hydrogel decreased from 4.7 nm to

2.0 nm with the same increase of precursor percentages.

4.3.2 Synthesis of methacryloyl-analogs and hydrogels

It is important to confirm the structure of hydrogel precursors to ensure covalent attach-

ments. Characterization was accomplished by FTIR and NMR spectra.
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Table 4.2
Properties of PEG hydrogels with different precursor percentage.

Precursor percentage 4.9% 7.5% 9.8% 15.3%
PEGDA 115 µL 180 µL 240 µL 400 µL

precursor solution DI water 1400 µL 1400 µL 1400 µL 1400 µL
H2SO4 (0.0010 M) 100 µL 100 µL 100 µL 100 µL

Redox KPS (0.00246 M) 120 µL 120 µL 120 µL 120 µL
initiation Na2S2O5 (0.070 M) 300 µL 300 µL 300 µL 300 µL
system FeSO4 (0.0010 M) 300 µL 300 µL 300 µL 300 µL

Structural M̄c (g/mol) 344 339 293 245
properties ξ (nm) 4.7 3.9 2.6 2.0

4.3.2.1 FTIR conformation of methacryloyl-analogs

The successful synthesis of MA-CR can be confirmed by FTIR spectra from the alkenyl

C=C stretch peak at 1670 cm−1 and the ester C=O stretch peak at 1730 cm−1 as shown in

Figure 4.21. A broad peak centered at 3400 cm−1 is the typical absorption peak for O-H

stretch. Absorption peaks at 2925 cm−1 are C-H stretch from methylene groups, which

also confirmed the successful attachment of methacryloyl group.

FTIR spectra of DHNDS and MA-HNDS are shown in Figure 4.22. The appearance of

C=O and C=C stretch peaks confirms the successful synthesis.

FTIR spectra of DHPDS and MA-HPDS are shown in Figure 4.23. The appearance

of C=O and C=C stretch peaks confirms the successful synthesis. The absorption peak at

1455 cm−1 and 945 cm−1 is from the methyl group in methacryloyl analog. The absorption

peak at 1100 cm−1 is for the C-O stretch.
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Figure 4.21. FTIR spectra of cresol red sodium salt and MA-CR.

Figure 4.22. FTIR spectra of DHNDS and MA-HNDS.
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Figure 4.23. FTIR spectra of DHNDS and MA-HNDS.

4.3.2.2 NMR spectra conformation of methacryloyl-analogs

The NMR spectra of indicator and methacryloyl indicators also confirmed the success-

ful synthesis of methacryloyl analogs.

The 1H-NMR spectrum of cresol red in D2O is shown in Figure 4.24. The 1H-NMR

spectrum of CR is comprised of 2 singlets, 4 doublets and 3 triplets. The two singlets are

due to the hydrogen atoms labeled h from the two identical methyl groups on the benzene

ring and hydrogen atoms labeled e next to the methyl groups. The 4 doublets are due to the

hydrogen atoms labeled a, d, g and f. The two triplets are due to the hydrogen atoms labeled

b and c. Due to the electronegativity of sulfonate groups, the hydrogen atom labeled a are

shifted downfield compared to d. Compared to CR, the 1H-NMR of MA-CR (Figure 4.25)

is more complicated. Due to the methacryloyl group, the hydrogen atom labeled h and h’

from the methyl group, g and g’, e and e’, f and f’ are no longer identical. The peak at 1.85
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due to the hydrogen atoms labeled j from the methyl group on methacryloyl group. The

peaks at 5.20 and 5.48 are due the hydrogen atoms labeled i from the methylene group.

The response at 4.63 is due to water in the sample solution.

The 1H-NMR spectra of DHPDS and MR-HPDS in D2O are shown in Figure 4.26 and

4.27. The 1H-NMR spectrum of DHPDS is comprised of 2 singlets, 2 doublets. The two

singlets are assigned to the hydrogen atoms labeled a and d. Due to the electronegativity

of sulfonate groups, the hydrogen atom d on the DHPDS molecule near these groups are

shifted downfield. The Ha atom is shifted furthest downfield to 8.88 ppm because of its

proximity to two sulfonate groups. The two doublets are attributed to the hydrogen atoms

labeled b and c. Compared to DHPDS, the 1H-NMR of MA-HPDS are much more com-

plicated. Because of the low sample concentration, the peaks of hydrogen atoms from the

pyrene are small. In addition, due to the methacryloyl group, hydrogen atoms labeled b and

b’, c and c’ are no longer identical, resulting in a much more complicated spectrum. The

peak at 1.71 is due to the hydrogen atoms labeled e from the methyl group on methacryloyl

group. The peaks at 5.21 and 5.52 are attributed to the hydrogen atoms labeled f from the

methylene group.

4.3.2.3 FTIR spectra of PEG and CR-PEG hydrogels

FTIR spectra of dry PEG hydrogel and CR-PEG hydrogel are shown in Figure 4.28.

The FTIR spectra of PEG and CR-PEG are almost identical because the CR:PEG ratio is

really small in hydrogels (1:1300). However, the small absorption peaks of benzene and

sulfonate groups from cresol red are visible at 1582 cm−1 and 1393 cm−1, respectively.
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Figure 4.28. FTIR spectra of dried PEG and CR-PEG hydrogels.

4.3.3 Spectral behaviors of immobilized indicators in hydrogels

The spectral behavior of immobilized indicators in hydrogel is discussed in the follow-

ing sections. Fluorescence spectra of all immobilized indicators except cresol red were

recorded. For CR-PEG, which is non-fluorescent, the absorption spectra were recorded.

4.3.3.1 FS-CTAB in hydrogel

The fluorescein-based indicator ion-pair FS-CTAB was immobilized in hydrogel

through physical entrapment. After thorough washing until no further indicator leaching,

the hydrogel with immobilized FS-CTAB is transparent and colorless, indicating that a very

small amount of indicator was immobilized in the hydrogel. The fluorescence of FS-CTAB

in hydrogel was easily detected and is shown in Figure 4.29. Compared to FS in solution
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(Figure 2.14), the excitation peak for protonated FS is the same, at 467 nm. However, the

excitation and emission peaks for deprotonated FS are each red shifted, from 490 nm to

510 nm and from 515 nm to 530 nm, respectively. This large red shift probably is because

of the matrix effect, which was also observed in sol-gel films (Figure 3.10).

Figure 4.29. The fluorescence spectra of FS-CTAB in hydrogel in solution (IS = 0.100 M). Top:
pH 4.36; Bottom: pH 9.03.

Immobilized FS in hydrogel retained its pH sensitivity. The normalized fluorescence

excitation spectra of FS in hydrogel are shown in Figure 4.30, top. The pK∗
a value is 5.90,
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slightly shifted to higher pH value compared to FS in solution (pK∗
a, 5.68) as shown in

Figure 4.30, bottom. FS-CTAB in hydrogel has a pH sensitive range at pH 4.5-7.5 as

shown in Figure 4.34.

Figure 4.30. The normalized fluorescence excitation spectra of FS-CTAB in hydrogel with emission
wavelength at 540 nm (top); and pK∗

a of FS-CTAB in hydrogel (bottom) (IS = 0.100 m).
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4.3.3.2 HPTS-CTAB in hydrogel

The ion-pair HPTS-CTAB was also physically trapped in PEG hydrogel matrix. Same

as FS-CTAB immobilized in hydrogel, the HPTS-CTAB immobilized hydrogel was trans-

parent and colorless as well because only small amount of indicator was immobilized.

The fluorescence excitation and emission spectra of HPTS-CTAB in hydrogel are

shown in Figure 4.31. The excitation spectra of HPTS-CTAB in hydrogel are the same

with HPTS in solution with excitation peaks at 402 nm and 467 nm, for protonated and

deprotonated forms, respectively. However, the emission spectra is different from HPTS in

buffer solution (Figure 3.4). HPTS in buffer solution only has one emission peak because

the excited state pK∗
a is around 1.0, so the excited state HPTS* disassociates to excited state

PTS−* rapidly and then emits light at 515 nm. In contrast, HPTS-CTAB in hydrogel, at pH

5.67, when excited at 400 nm, has two emission peaks, the emission peak from the excited

state protonated form, HPTS* and the excited deprotonated form, PTS−*, at 425 nm and

510 nm, respectively. There could be several explanations for the unexpected appearance

of the 425 nm peak.

The appearance of the emission from the excited state protonated form HPTS* was also

observed in HPTS-CTAB in sol-gel films, and explained as an effect of hydrogen bonding.

That is because of the hydrophobicity of the sol-gel films, the fewer water molecules sur-

round HPTS compared to in solution. The lack of hydrogen bonding makes the excited

state of deprotonated PTS−* less stable than in solution, which leads to the strong recom-

bination of the hydrogen ions and PTS−* (Chapter 3). This explanation is not valid in

the hydrogel system, because hydrogel matrix is extremely hydrophilic. The 9.8% PEG

hydrogel contains 92% of water in its swollen state (calculated from its swelling ratio).
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Figure 4.31. Fluorescence excitation and emission spectra of HPTS-CTAB in hydrogel in solution
(IS = 0.100 M): pH 5.67 (top) and pH 9.82 (bottom).

One of the possibilities for the appearance of emission from the excited state of the

protonated form HPTS is that during the polymerization reaction, the free radical might

react with -OH group on the pyrene ring, converting it to an -OR group. The -OR species

has no acidic group and would have the same fluorescence behavior as the protonated form

of HPTS, as observed in ethanol.

To confirm this hypothesis of hydroxyl group reaction with the free radical initiators
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during the polymerization, two solutions with and without free radical initiator AIBN

were compared. Poly(methyl methacrylate)(PMMA) was used as the precursor instead

of PEGDA, because after the polymerization reaction, PMMA can be separated with the

solution from precipitation in a ice bath. The rest of the procedures were the same, both

were degassed with nitrogen and both were reacted at 70 oC for 6 hours. As shown in Fig-

ure 4.32, the one without AIBN, at both acidic and basic solutions, only has one emission

peak at 510 nm. On the other hand, the one with AIBN, at both acidic and basic conditions,

has two emission peaks at 425 nm and 510 nm. This confirms that some amount of HPTS

was permanently converted to a non-acidic, but still fluorescent form by the free radicals

with some remaining acidic fraction still available to sense the media pH.

This unexpected emission peak did not interfere with the pH sensing, because instead

of the emission spectra, the excitation spectra was used for pH sensing.

The normalized fluorescence excitation spectra of HPTS-CTAB in hydrogel were

recorded in Figure 4.33, top; The pKa of HPTS-CTAB in hydrogel was calculated, 8.06

as shown in Figure 4.33, bottom, which is larger than HPTS in solution, 7.35 (Figure 3.14).

HPTS-CTAB in hydrogel has a pH sensitive range at pH 7.0 - 10.0 (Figure 4.34).

4.3.3.3 HPDS-PEG hydrogel

After the reaction of DHPDS with methacrylic anhydride, one of the hydroxy groups

on pyrene was substituted by a methacryloyl group and formed MA-HPDS. MA-HPDS

only has one hydroxy group which can dissociate in aqueous solution. Therefore, the

fluorescence spectra of MA-HPDS were expected to be similar with HPTS.
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Figure 4.32. Fluorescence emission spectra of precursor solution of HPTS-CTAB with or without
free radical initiator, AIBN. The excitation wavelength was 400 nm. Top: pH 3.5; Bottom: pH 9.5.

MA-HPDS was covalently bound in PEG hydrogel to form HPDS-PEG hydrogel,

which is transparent and colorless. Unlike the physically entrapped FS-CTAB and HPTS-

CTAB, little leaching of color into the solution was observed during the first rinse after

reaction because of the covalent binding of the indicator into hydrogel matrix. The absorp-

tion spectra can not be measured due to the low concentration of the indicator. However,

fluorescence spectra can be measured because of its high quantum yield (Figure 4.35).
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Figure 4.33. The normalized fluorescence excitation spectra of HPTS-CTAB in hydrogel with
emission wavelength at 520 nm (top); and pKa of HPTS-CTAB in hydrogel(bottom) (IS = 0.100
M).

The spectra of HPDS-PEG are similar to HPTS in solution (Figure 3.4) and do not

resemble the precursor DHPDS (Figure 4.5). At low pH, 7.01, the main excitation peak

is at 400 nm with a shoulder peak at 380 nm, which corresponds to the absorption peak
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Figure 4.34. pH sensitive range of FS-CTAB and HPTS-CTAB in hydrogel (IS = 0.100 M).

of the protonated form. At high pH, 10.71, the main excitation peak is at 467 nm, which

corresponds to the absorption peak of the deprotonated form. This confirmed that after the

substitution reaction, the fluorophore only has one hydroxyl group remains, and it still re-

sponds to the pH change. Similar to HPTS in solution, the fluorescence excitation spectrum

of HPTS-PEG hydrogel varies with pH and only one emission peak at 510 nm is observed.

The normalized fluorescence excitation spectra of HPDS-PEG hydrogel are shown in

Figure 4.36, top. The pKa of HPDS-PEG hydrogel is calculated to be 8.80, as shown in

Figure 4.36, bottom. The pH sensitive range of HPDS-PEG hydrogel is pH 8.0 - 10.5 as

shown in Figure 4.37.
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Figure 4.35. Fluorescence excitation and emission spectra of HPDS-PEG hydrogel in solution (IS
= 0.100 M): pH 7.01 (top) and pH 10.71 (bottom).

4.3.3.4 HNDS-PEG hydrogel

After the reaction of naphthalene derivative, DHNDS with methacrylic anhydride, one

of the hydroxy group on the naphthalene was substituted by a methacryloyl group, by

which the covalent binding of this indicator into the hydrogel was ensured. The HNDS-

PEG hydrogel was transparent and colorless.
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Figure 4.36. Normalized fluorescence excitation spectra of HPDS-PEG hydrogel (IS = 0.100 M)
with emission wavelength at 520 nm (top) and pKa value of HPDS-PEG hydrogel (bottom) (IS =
0.100 M).

The fluorescence spectra of HNDS-PEG hydrogel in buffer solution (0.100 M) were

recorded and are shown in Figure 4.38. At pH 12.15, the emission peak of HNDS-PEG

hydrogel is at 455 nm, the excitation peaks are at 314 nm and 370 nm. At pH 7.44, the

emission peak of HNDS-PEG hydrogel is also at 455 nm and the excitation peaks at 290
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Figure 4.37. pH sensitive range of HPDS-PEG, HNDS-PEG and CR-PEG hydrogels (IS = 0.100
M).

nm and 340 nm, with much lower intensity. The excitation spectra of HNDS-PEG are more

similar to HNDS in buffer solution than DHNDS, because after conversion, MA-HNDS

contains only one hydroxyl group.

The normalized fluorescence excitation spectra of HNDS-PEG hydrogel in buffer are

shown in Figure 4.39, top, very similar to HNDS in buffer solution (Figure 4.12). The pKa

value for HNDS-PEG hydrogel is 9.50 (Figure 4.39, bottom), shifted to higher pH value

compared to HNDS in solution (8.92). The pH sensitive range of HNDS-PEG hydrogel is

pH 8.5 - 11.5 as shown in Figure 4.37.
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Figure 4.38. Fluorescence spectra of HNDS-PEG hydrogel in solution (IS = 0.100 M). Top: pH
12.15; Bottom: pH 7.44.

4.3.3.5 CR-PEG hydrogel

The UV-Vis absorption spectra of CR-PEG hydrogel were recorded (UV-Vis absorption

spectra of PEG hydrogel were subtracted) and are shown in Figure 4.40, top. In acidic and

neutral media, the maximum absorption peak of protonated CR-PEG hydrogel is located

at 420 nm, blue shifted by about 10 nm compared to CR in solution (430 nm). In more
155



Figure 4.39. The normalized fluorescence excitation spectra of HNDS-PEG hydrogel (top) (IS =
0.100 M); and the pKa values of HNDS-PEG hydrogel (bottom) (IS = 0.100 M).

basic media, cresol red in hydrogel matrix was deprotonated. The absorption peak for the

deprotonated form occurs at 580 nm, red shifted by 5 nm comparing with cresol red in

buffer solution (575 nm). The pKa value of CR-PEG is calculated using the same method

as for cresol red in buffer solution, giving 9.36, as shown in Figure 4.40, bottom. The pKa
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value of CR in hydrogel is shifted to high pH range as compared in CR in solution (8.23).

The pH sensitive range for CR-PEG hydrogel is pH 8.0 -11.0 as shown in Figure 4.37.

Figure 4.40. UV-Vis absorption spectra of CR-PEG in buffer (top) (IS = 0.100 M) and the pKa

value of CR-PEG hydrogel (bottom) (IS = 0.100 M).
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4.3.4 pKa shift of immobilized indicators in hydrogel

A pKa shift to more basic values in hydrogel compared to in solution was observed. A

summary of the pKa values of indicators in both buffer solution and hydrogels is listed in

Table 4.3.

Table 4.3
A list of pKa values of indicators in solution and hydrogels.

Indicators solution(IS = 0.030 M) hydrogels (IS = 0.100 M) ∆pKa

FS 5.68 5.90 0.22
HPTS 7.35 8.06 0.71

DHPDS 7.03, 9.14 8.80 1.45*
DHNDS 8.70 9.50 0.58*
HNDS 8.92 \ \

CR 8.23 9.36 1.13

∆ values with * are compared to HPTS and HNDS in solution for indicators DHPDS and
DHNDS, respectively, because after copolymerization in hydrogel matrix, there are only one
hydroxyl group available for dissociation.

As discussed in Chapter 2 and Chapter 3, the pKa shift of indicators immobilized in

porous silica matrix results from the free silanol groups (Si-OH) on the internal surface;

Those silanol groups can be protonated and deprotonated in solution, acting as additional

buffers. However, this explanation is not valid in hydrogel matrix, because the PEG hydro-

gels are uncharged hydrophilic polymers. This is confirmed from the structure of PEGDA

and also the unchanged swelling ratio of hydrogel in different pH solutions. This pKa shift

to high values can be explained by the medium effect, as the activity of a species differs

profoundly from the molarity when the composition of the solvent is altered by addition

of an organic constituent to aqueous medium [150]. Adding nonelectrolytes such as al-

cohol to aqueous solution changes the dielectric constant of the solvent, which affects the

dissociation constant of the weak acid in that solvent.
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The simple Born treatment is often useful in predicting solvent effects on proton transfer

reactions in a qualitative way. The general acidic dissociation reaction in the solvent S is

formulated

HA+ S ↔ SH+ + A− (4.9)

The ratio of the values of KHA in the two solvents can be expressed in the following

equation [150]:

∆pKa = spKa − wpKa = 122(
1

rSH+

+
z2
A

rA
− z2

HA

rHA
)(

1

εs
− 1

εw
) (4.10)

where spKa and wpKa refers to the apparent pKa values of a indicator in solvent S

and water; r is the radii of the ions, and z is the charge on the ions. εw is the dielectric

constant of water, which is 81 [150]; εs is the dielectric constant of the solvent S. As in

the swollen state of hydrogel, for 9.8% PEG hydrogel, it has up to 92% water content,

and thus 8% of PEG. The dielectric constant of PEG-water mixture has been studied, and

for a mixture with 90% of water and 10% of PEG (MW = 600), the dielectric constant

is 74 [151]. Although our hydrogel matrix was not exactly an mixture of PEG and water

and slightly different ratio of these two components, the dielectric constant should be very

similar with this value. With estimation of the radii of the ions from simple bond length

calculation, the pKa shift of different indicators in hydrogel can be estimated, in the range

of 0.3 - 0.5 pH units, which is slightly smaller than the shifts we observed.

As for physically entrapped indicators, their pKa shifts in hydrogel is smaller compared

to covalently bound indicators. ∆pKa of physically entrapped FS and HPTS are about 0.2
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and 0.7, respectively. ∆pKa of covalently bound indicators HPDS, HNDS and CR are 1.4,

0.4 and 1.1, respectively. The smaller pKa shifts of physically entrapped indicators might

be a result of the positively charged ammonium ions on the ion-pair reagent, CTAB, which

has an effect of lowering the indicator pKa values [123].

4.3.5 Fluorescence lifetime measurements

The fluorescence lifetimes of fluorescent dyes FS, HPTS, DHPDS, DHNDS, HNDS in

both solution and PEG hydrogel were measured and are listed in Table 4.4.

Table 4.4
Fluorescence lifetimes of fluorescent dyes in solution and PEG hydrogels.

Name λex, nm λem, nm Lifetime, ns χ2 condition
FS 490 520 4.2 ± 0.1 1.054 pH 6.65

FS-CTAB in hydrogel 500 530 3.9 ± 0.1 1.056 pH 9.08
HPTS 415 510 5.4 ± 0.1 1.026 pH 4.13
HPTS 470 510 5.5 ± 0.1 0.9928 pH 7.01

HPTS-CTAB in hydrogel 470 510 5.5 ± 0.1 1.000 pH 10.4
HPDS-PEG 400 504 4.7 ± 0.1 0.975 0.1 M HCl
HPDS-PEG 470 504 4.6 ± 0.1 1.006 0.1 M NaOH

DHNDS 366 460 16.6 ± 0.2 0.9843 pH 9.40
HNDS 366 457 16.9 ± 0.2 1.018 pH 9.40

HNDS-PEG 366 460 11.7 ± 0.1 1.040 pH 8.9

Fluorescent indicator ion-pairs, FS-CTAB and HPTS-CTAB were physically entrapped

in hydrogel matrix, their fluorescence lifetimes in hydrogel remained unchanged compared

to in buffer solution. As for FS, the lifetimes for excited state deprotonated form was

around 4.0 ns. For excited state deprotonated HPTS, the lifetime was around 5.4 ns in both

hydrogel and buffer solution. The fluorescence decay curves and fitting for FS and HPTS

in solution and hydrogel are shown in Figure 4.41, (top) and (bottom), respectively.
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Figure 4.41. Fluorescence decay curves for fluorescent indicators physically entrapped in hydrogel.
The solid lines represent the best fits to the data. (top): FS, with λex = 467 nm for solution and
hydrogel and λem = 515 nm for solution, and λem = 530 nm for hydrogel; (bottom): HPTS, with
λex = 470 nm and λem = 510 nm for solution and hydrogel.

For fluorescent indicator methacryloyl analogs, MA-HPDS and MA-HNDS, which

were covalently bound in hydrogel, their fluorescence lifetimes in hydrogel decreased com-
161



pared to the same indicators in solution as shown in Figure 4.42, (top) and (bottom), re-

spectively. For HPTS and HPDS-PEG hydrogel, the fluorescence lifetimes of excited state

deprotonated form were 5.4 ns and 4.6 ns, respectively. For DHNDS and HNDS-PEG hy-

drogel, the fluorescence lifetimes of excited state deprotonated form were 16.9 ns and 11.7

ns, respectively.

4.3.6 Sensor performance

4.3.6.1 Potential use of CR-PEG hydrogel as reusable "pH paper"

CR-PEG hydrogel changed color from yellow to purple when the pH of the buffer

solution changed from 8.5 to 10.5 as shown in Figure 4.43. In addition, because of the

covalent binding of cresol red in hydrogel matrix, no cresol red leaching to the solution

was found. The color change is reproducible. For this reason, the CR-PEG hydrogel can

be used as reusable pH "paper" with a detection range of pH 8.5 - 10.5.

4.3.6.2 Equilibrium time

The hydrogel samples is super-porous hydrogel with interconnected open cell structure

(>1 µm). The driving force for ionic exchange is the concentration difference inside and

outside of the hydrogel. The equilibrium time of the dye in hydrogel against the solution

pH change is highly depended on the size of the hydrogel samples. Smaller size results in

shorter equilibrium time. The dimensions of the CR-PEG hydrogel we tested were around

1 cm × 2 cm × 1 mm. The equilibrium time for indicators immobilized in hydrogels was
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Figure 4.42. Fluorescence decay curves for fluorescent indicators bound in hydrogel. The solid
lines represent the best fits to the data. (top): HPTS and HPDS-PEG, with λex = 470 nm and λem =
510 nm for solution and HPDS-PEG hydrogel; (bottom):DHNDS and HNDS-PEG, with λex = 366
nm and λem = 460 nm for solution and HNDS-PEG hydrogel.

evaluated. Figure 4.44 shows that the equilibrium time for CR-PEG hydrogel upon solution

pH changes is about 2 minutes with slightly stirring. Without stirring, the equilibrium time
163



(a) 7.12 (b) 7.45 (c) 7.95 (d) 8.43 (e) 8.96 (f) 9.50 (g) 9.94 (h) 10.49 (i) 10.88 (j) 11.46(k) 11.97

Figure 4.43. The Color change of CR-PEG in different pH buffer solution. The bottom line are the
pH of the buffer solution.

would be much longer. We did not observe a difference in equilibrium time of increasing

media pH or decreasing media pH. The similar result for HPDS-PEG hydrogel was ob-

tained with equilibrium time of about 4 minutes as shown in Figure A.11; the difference is

a result of bigger sample size.

Figure 4.44. The equilibrium time of CR-PEG upon media pH change.
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4.3.6.3 Long term stability

All immobilized indicators in hydrogel remained pH sensitivity for at least 6 months,

except HNDS-PEG. Due to the indicator instability, HNDS-PEG hydrogel is not very sta-

ble. After 6 months, HNDS-PEG hydrogels become nonfluorescent.

4.4 Conclusion

PEGDA was used as precursor/crosslinker in hydrogel synthesis. Both free radical ini-

tiator and redox initiation system were used for PEG hydrogel synthesis. The structural

properties of PEG hydrogel were studied. The swelling ratio of the hydrogel was recipro-

cally proportional to the percentage of precursor percentages as the other parameters were

unchanged. For hydrogel formed with 9.8% precursor percentage, which is used for in-

dicator immobilization, the swelling ratio is 11.8 (as 92% water content). The average

molecular weight between adjacent crosslinks (M̄c) and the network mesh size (ξ) for PEG

hydrogel decrease with increasing of precursor percentages. As for 9.8% PEG hydrogel,

M̄c and ξ are 293 g/mol and 2.6 nm, respectively.

Indicators were immobilized in hydrogel both physically and chemically. FS and HPTS

were ion-paired with a common ion-pair reagent, CTAB, and then physically entrapped into

hydrogel matrix. DHPDS, DHNDS and CR were reacted with methacrylic anhydride and

methacryloyl groups were successfully covalently attached to the indicator compounds.

The indicators were then covalently bound into the hydrogel matrix through copolymeriza-

tion reaction. These indicator retained their pH sensitivity in hydrogel.
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A pKa shift to higher pH range in hydrogel compared to in solution was observed.

As listed in Table 4.4. The pKa values for FS in solution and hydrogel were 5.68 and

5.90a, respectively. For HPTS, the pKa values in solution and hydrogel were 7.35 and

8.06, respectively. The pKa value of HPDS-PEG was compared with HPTS in solution,

because for HPDS-PEG, only one hydroxy group was available for photon dissociation,

which is more similar to HPTS than DHPDS. For HPDS-PEG, the pKa in hydrogel was

8.8, much larger than HPTS in solution, 7.35. For HNDS-PEG, also, only one hydroxy

group available for dissociation, the pKa value in hydrogel is 9.5, which is larger than

HNDS in solution, 9.16. The calculated pKa of CR in solution and CR-PEG were 8.23 and

9.36, respectively. This pKa shift to higher pH range probably is a result of the slightly

hydrophobic environment of the hydrogel.

The fluorescence lifetime of fluorescent indicators were recorded. For physically en-

trapped indicators, FS and HPTS, their lifetimes remained almost the same with those in

solution. For covalently bound indicators, DHPDS and DHNDS, their lifetimes decreased

compared to those in solution.

The CR-PEG hydrogel changed color in different buffer solution, which can be used as

a reusable "pH sensor".

4.5 Future work

The pH sensitivity of indicators immobilized in a hydrogel was very promising. Further

study needs to be conducted before it can be eventually applied to pH measurement in the

real word.
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The ionic strength and temperature effects on pKa of indicators immobilized in hydro-

gel will be studied.An equation will be developed for solution pH measurement based on

the fluorescence or absorbance ratios of the indicators.

Hydrogel can be deposited to quartz slides through covalent binding. Compound such

as allyltriethoxysilane will be used to form a monolayer on the quartz slide with surface

silanol groups. The alkenyl group on the monolayer can participate in the polymerization

reaction with PEGDA. In this way, hydrogel can be covalently bound to the quartz slide

which is used as a solid support.

For pH measurement in a more broad range, several indicators can be immobilized

in the same hydrogel but in separated regions to avoid interfering with each other. As a

inspiration of the commercially available pH paper, these pH indicators can be covalently

bound into hydrogel matrix. The pH probe will show similar color change in a much broad

pH range, ideally, 0-14. Because of the covalently binding, the indicators can not leach out

from the hydrogel matrix, the pH probe can be reused many times as a so called reusable

"pH paper".
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5. CONCLUSIONS

The activity of hydrogen ions (pH) is one of the most important parameters for chem-

ical and biological applications such as environmental monitoring, biomedical research.

The pH of an aqueous solution is usually measured by a glass electrode with the advan-

tages such as simplicity and low cost. However, the electrodes need to be calibrated fre-

quently and they are difficult to miniaturize. In addition, due to the liquid junction potential

between the standard solution and the sample solution, up to 1 pH unit error could be intro-

duced if the ionic strength of the sample solution is very low (such as fresh water samples).

Optical pH sensors based on immobilization of pH sensitive indicators to a solid support

were studied and developed to overcome the defects of the potentiometric methods. Optical

pH sensors have many advantages including high sensitivity, no need for a reference sig-

nal, easy miniaturization and immunity to electrical interference. In this research project,

three different optical pH sensors based on three different porous supporting materials were

evaluated. The supporting materials were characterized and the spectral behavior and pH

sensitivity of various immobilized indicators were studied. Their performance including

sensitivity, equilibrium time, reproducibility, and long term stability were evaluated as po-

tential optical pH sensors.

The first optical pH probe was developed by covalently binding of the fluorescent pH
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indicator fluorescein-5-isothiocyanate (FITC) onto the inner surface of mesoporous silica

(Figure 2.6) . The immobilized FITC retained its pH sensitivity with fluorescence spectral

behavior very similar to fluorescein in solution. Fluorescence intensity of FITC bound in

mesoporous silica was greatly increased relative to that on a planar quartz slide, resulting

from the high surface area of the mesoporous silica (Figure 2.18). The excited state pKa

value of FITC in mesoporous silica was 5.58 (Figure 2.21), which is slightly smaller than

that of fluorescein in solution, 5.68 (Figure 2.16). The small shift of pK∗
a is due to the

free silanol group on the inner surface of mesoporous silica, which acted as an additional

buffer. The pH of the bulk solution can be calculated using the modified equation 2.9;

which matched with the pH values from electrode measurement. The pH sensitive range

for this optical sensor is 4.5 - 6.5, with error less than 0.11 pH units. Great reproducibility

was observed by shifting different buffer solution as shown in Figure 2.28. After washing

thoroughly, no leaching was detected and the sensor was stable for over 4 months. However,

this probe experienced a long equilibrium time up to 100 minutes due to the small pores

and relative thick porous silica membrane (0.5 mm).

Sol-gel films have been used to entrap pH indicators to work as pH sensors because of

their optical transparency, mechanical stability, chemical inertness and flexibility in terms

of shaping sensor configurations. Two different precursors, ethyltriethoxysilane (ETEOS)

and 3-Glycidoxypropyltrimethoxysilane (GPTMS) were used for sol-gel process. The pH

sensitive fluorescent indicators fluorescein-5-(and-6)-sulfonate (FS) and 8-hydroxypyrene-

1,3,6-trisulfonate (HPTS) were ion-paired with a common surfactant cetyltrimethylammo-

nium bromide (CTAB) before physically entrapment in sol-gel films. After immobilization

in sol-gel films, the excitation and emission peaks of FS were red shifted by 15 - 20 nm

compared to in solution phase. For HPTS, the excitation spectra of both protonated and

deprotoanted forms remained the same as in solution phase. However, in the sol-gel, emis-

169



sion was visible from both protonated (435 nm) and deprotonated (510 nm) HPTS, unlike

in solution where emission was only observed from the deprotonated form (510 nm) as

shown in Figure 3.15 and Figure 3.4, respectively. This reveals either the decrease in pho-

toacidity of HPTS after immobilization or a fraction of -OH groups in HPTS were blocked

from deprotonation. The calculated pKa values of both FS and HPTS in sol-gel film were

lower than those in solution, 4.22 and 5.68, and 5.58 and 7.35, respectively. This pKa shift

was attributed to the silanol groups on silica oxide surface. In addition, the indicators were

surrounded by positive charged amomonium groups from the surfactant. For the sol-gel

films with a thickness of around 472 nm, the equilibrium was less than 5 minutes (Figure

3.22). No leaching was observed after thorough washing, and the sensor was stable for at

least a few months.

Hydrogel was also used for pH indicator immobilization for pH sensing because of its

capability of imbibing a significant amount of aqueous solution. Various pH indicators

were immobilized in hydrogels through both physically entrapment and covalently bind-

ing. pH sensitive ion-pairs, FS-CTAB and HPTS-CTAB synthesized in chapter 3 were

immobilized in hydrogels during the polymerization process initiated by the free radical

initiators in DMF. Three indicators, 6,8-hydroxypyrene-1,3-disulfonate (DHPDS) and 2,7-

dihydroxynaphtalene-3,6-disulonate (DHNDS) and cresol red (CR) were first reacted with

methacrylic anhydride to form methacryloyl-analogs and then copolymerized in hydrogel

films with redox initiation system. A pKa shift to higher pH value was observed for all

these indicators in hydrogel than in solution. This shift can be explained with the medium

effect on acid dissociation constant, which can be estimated using equation 4.10. With

superporous structure, the equilibrium time of indicators in hydrogel was short (within 4

minutes) even with a large dimensions 1 cm × 2 cm × 0.5 mm (Figure 4.44). The equi-

librium time can be reduced by decreasing the size of the hydrogel samples. These sensors
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showed a great long term stability (for at least 6 months) except HNDS-PEG, which be-

came nonfluorescent after 6 months as a result of instability of this indicator. CR-PEG

hydrogel changes color from yellow to purple with pH changing from 8.5 to 10.5. In addi-

tion, covalent binding prevented indicators from leaching, making a possibility of CR-PEG

to work as a reusable pH "paper " with working range 8.5 - 10.5.

The properties of these three different matrix used for indicator immobilization were

summarized and compared in Table 5.1

Table 5.1
Comparison of properties of mesoporous silica, sol-gel films and hydrogels

Properties Mesoporous silica Sol-gel films Hydrogels
Transparent X X X
No leaching X X X
Hydrophilic X × X

Fast equilibrium × X X
Robust × X ×

pKa shift X X X

All matrices were transparent and no leaching of indicators were observed after through

washing. As for mesoporous silica, it required long equilibrium time (up to 100 minutes)

and it was not robust because the high stress during the oxidation of mesoporous silicon

broke the matrix easily. Compared to mesoporous silica, sol-gel films were robust and had

short equilibrium time because the film thickness were controlled in range of 60 nm - 1300

nm with spin-coating. However, because of the induction of the organic functional groups,

sol-gel films were less hydrophilic. Hydrogels are hydrophilic due to its ability of absorbing

a significant amount of water, and its equilibrium time was short because of the superporous

structure. Hydrogels was less robust compare to sol-gel films which can be deposited on a

quartz slides. However, this disadvantages could be overcome by introducing a monolayer

of allytriethoxysilane which can covalently bound to silica surface and copolymerized with
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polyethylene diacrylate. In this way, hydrogel could be deposited on quartz slide also,

increasing its robustness. As for the pKa shift of indicators in these matrices relative to

in solution phase, the shifts existed in all these matrices. However, this property can not

be defined as an disadvantage, because the inner surface properties of the matrices can be

studied and pKa values can be tuned to the desired pH range.

Both fluorescein and pyrene based indicators showed high fluorescence quantum yield

and great photostability in the experiments. However, the naphthalene based indicators

were not stable in basic conditions, which makes them not quite suitable for optical pH

sensor development.
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APPENDIX A. SUPPLEMENT INFORMATION

A.1 List of indicators

A.1.1 Indicator structures

A.1.2 Indicators pKa values in solution and different matrix
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Table A.1
A list of indicators used in this dissertation.

Abbreviation Name Structure 

 fluorescein 

 

FITC 
fluorescein-5-

isothiocyanate 

 

FS 

fluorescein-5-(and-6)-

sulfonic acid, trisodium 

salt 

 

HPTS 

8-hydroxypyrene-1,3,6-

trisulfonic acid, trisodium 

salt 

 

DHPDS 

6,8-dihydroxypyrene-1,3-

disulfonic acid disodium 

salt 

 

DHNDS 

2,7-

dihydroxynaphthalene-

3,6-disulfonic acid, 

disodium salt 
 

HNDS 

2-hydroxynaphthalene-

3,6-disulfonic acid, 

disodium salt  

CR cresol red 
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Table A.2
A list of indicators pKa values in solution and different matrix.

Indicator Solution Mesoporous silica Sol-gel film Hydrogel
Fluorescein 5.68 5.58 4.22 5.90

HPTS 7.35 \ 4.78 8.06
DHPDS 7.03, 9.14 \ \ 8.80
DHNDS 8.70 \ \ 9.50
HNDS 8.92 \ \ \

CR 8.23 \ \ 9.36

The pKa values of indicators in buffer solution were calculated at ionic strength of 0.030 M.
The pKa value of fluorescein in mesoporous silica was calculated at ionic strength of 0.030 M.
The pKa values of FS and HPTS in sol-gel film were calculated at ionic strength of 0.050 M
and 0.030 M, respectively. The pKa values of indicators in hydrogel were calculated at ionic
strength of 0.100 M.
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A.2 Supplement information for Chapter 2

A.2.1 Extinction coefficients and quantum yield of fluorescein in buffer

The molar extinction coefficient (ε, M−1 cm−1) is a measurement of how strongly a

chemical species absorbs light at a give wavelength. It is an intrinsic property of the

species. The absorbance, A, of the species is dependent on its extinction coefficient, ε, the

pathlength, l, and the concentration, c. The relationship can be defined by Beer-Lambert

law:

A = εcl (A.1)

The molar extinction coefficients of mononanion and dianion species of fluorescein in

pH 4.25 and pH 8.03, respectively were determined using eq A.1 as shown in Figure A.1.

The pathlength is 1 cm, the x-axis is the concentration of fluorescein in µM, and the y-axis

is the absorbance. Thus resulting slopes are the extinction coefficients for fluorescein in at

different wavelength and different pH solution.

The quantum yield of fluorescein can be calculated using a standard sample which have

a fixed and known fluorescence quantum yield. Quinine sulfate was used as quantum yield

standard. The absorption and fluorescence spectra of quinine sulfate in 0.05 M H2SO4, and

fluorescein in pH 4.25 and pH 8.03 buffer solution were recorded. Plots of fluorescence

intensity vs. absorbance are shown in Figure A.2. According to the following equation:
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Figure A.1. Extinction coefficients of monoanion and dianion fluorescein in various wavelength.
The pathlength of the cuvette is 1 cm.

φu = φs
Gradu
Grads

γ2
u

γ2
s

(A.2)

where φu is the quantum yield for the unknown species, as in this case, fluorescein. φs

is the quantum yield for the standard, quinine sulfate. Gradu and Grads are the gradient

from the plot of integrated fluorescence intensity vs. absorbance of fluorescein and quinine

sulfate, respectively. γu and γs are the refractive index of the solvent for fluorescein and

quinine sulfate solutions, respectively. Because both solution were aqueous solution, I

assumed the refractive index of the both solution are the same. So the quantum yield

of fluorescein is proportional to the gradient. The fluorescence quantum yield of quinine

sulfate in 0.05 M H2SO4 under 390 nm excitation is 0.51.[152] So the fluorescence quantum

yields of fluorescein in pH 4.25 buffer solution under 450 nm and 467 nm excitation are

0.17 and 0.26 respectively; and the fluorescence quantum yield of fluorescein in pH 8.03

buffer solution under 495 nm excitation is 0.82.
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Figure A.2. Fluorescence intensity vs. absorbance of quinine sulfate in 0.05 M H2SO4, and fluo-
rescein in different buffer solutions. The calculated fluorescence quantum yields of fluorescein in
pH 4.25 buffer solution under 450 nm and 467 nm excitation are 0.17 and 0.26 respectively; and
the fluorescence quantum yield of fluorescein in pH 8.03 buffer solution under 495 nm excitation is
0.82.

A.2.2 Fluorescence spectra of FITC on quartz slide

A.2.3 pK∗
a of FITC on glass beads
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Figure A.3. Normalized fluorescence excitation spectra of FITC on quartz slide in solution (IS =
0.030 M) with emission wavelength at 520 nm.

Figure A.4. pK∗
a of FITC on glass beads in solution (IS = 0.120 M). The standard deviation was

between 0.006 - 0.037 (n =4).
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A.3 Supplement information for Chapter 3

A.3.1 FTIR spectra of indicator ion-pairs and sol-gel films

FTIR spectra of HPTS, CTAB and indicator ion-pairs HPTS-CTAB are recorded in

Figure A.5. HPTS and CTAB were ion-paired, we would expected the spectrum of HPTS-

CTAB is a overlap of the spectra of HPTS and CTAB. As shown in the figure, the infrared

absorption spectrum of ion-pair is a combination of the spectra of fluorescent indicator

HPTS and CTAB.

Figure A.5. FTIR spectra of HPTS, CTAB and indicator ion-pair HPTS-CTAB.

The FTIR spectrum of the sol-gel sample is shown in Figure A.6. Two peak bands char-

acteristic of the Si-O-Si bonds, are centered at around 800 cm−1 and 1080 cm−1 and due to

symmetric and asymmetric stretching of the oxygen atoms, respectively. Undesirable ab-

sorption band of the Si-OH bond at 950 cm−1, indicating there are free silanol groups on
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surface of silica network. On the blue wing of this band there is a shoulder and a few bands

of medium intensity. They are due to the presence of aliphatic chains, and corresponding

to vibration of the carbon skeleton and bending vibrations of aliphatic groups.

Figure A.6. FTIR spectra of sol-gel precursors ETEOS and GPTMS and sol-gel film.

A.3.2 Thin film thickness of sol-gel films
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(a) S1 (b) S2

(c) S5 (d) S10

Figure A.7. Ellipsometry data and fitting of sol-gel thin films.

A.4 Supplement information for Chapter 4

A.4.1 Absorption and fluorescence excitation spectra of DHPDS in buffer

A.4.2 Normalized absorption and fluorescence excitation spectra of DHNDS in

buffer
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Figure A.8. Absorption spectra (top) and fluorescence excitation spectra (bottom) of DHPDS (1.0
µM) in solution (IS = 0.030 M). For fluorescence excitation spectra, the emission wavelength was
set at 510 nm.

A.4.3 Calculated swelling ratio against ionic strength of solution

A.4.4 Equilibrium time of HPDS-PEG hydrogel upon pH change

The equilibrium time of HPDS-PEG hydrogel upon pH change of buffer solution is

short, about 4 minutes as shown in Figure A.11.
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Figure A.9. The normalized UV-Vis absorption spectra (top) and fluorescence excitation spectra
(bottom) of DHNDS (20 µM) in solution (IS = 0.030 M).
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Figure A.10. Swelling ratio of 7.5% PEG hydrogels in KCl solution with different concentration.

Figure A.11. Equilibrium time of HPDS-PEG upon pH change of solution (IS = 0.100 M).
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