56,961 research outputs found

    Oversampling of wavelet frames for real dilations

    Get PDF
    We generalize the Second Oversampling Theorem for wavelet frames and dual wavelet frames from the setting of integer dilations to real dilations. We also study the relationship between dilation matrix oversampling of semi-orthogonal Parseval wavelet frames and the additional shift invariance gain of the core subspace.Comment: Journal of London Mathematical Society, published online March 13, 2012 (to appear in print

    Oversampling for Imbalanced Learning Based on K-Means and SMOTE

    Full text link
    Learning from class-imbalanced data continues to be a common and challenging problem in supervised learning as standard classification algorithms are designed to handle balanced class distributions. While different strategies exist to tackle this problem, methods which generate artificial data to achieve a balanced class distribution are more versatile than modifications to the classification algorithm. Such techniques, called oversamplers, modify the training data, allowing any classifier to be used with class-imbalanced datasets. Many algorithms have been proposed for this task, but most are complex and tend to generate unnecessary noise. This work presents a simple and effective oversampling method based on k-means clustering and SMOTE oversampling, which avoids the generation of noise and effectively overcomes imbalances between and within classes. Empirical results of extensive experiments with 71 datasets show that training data oversampled with the proposed method improves classification results. Moreover, k-means SMOTE consistently outperforms other popular oversampling methods. An implementation is made available in the python programming language.Comment: 19 pages, 8 figure

    Handling oversampling in dynamic networks using link prediction

    Full text link
    Oversampling is a common characteristic of data representing dynamic networks. It introduces noise into representations of dynamic networks, but there has been little work so far to compensate for it. Oversampling can affect the quality of many important algorithmic problems on dynamic networks, including link prediction. Link prediction seeks to predict edges that will be added to the network given previous snapshots. We show that not only does oversampling affect the quality of link prediction, but that we can use link prediction to recover from the effects of oversampling. We also introduce a novel generative model of noise in dynamic networks that represents oversampling. We demonstrate the results of our approach on both synthetic and real-world data.Comment: ECML/PKDD 201

    Capacity Outer Bound and Degrees of Freedom of Wiener Phase Noise Channels with Oversampling

    Full text link
    The discrete-time Wiener phase noise channel with an integrate-and-dump multi-sample receiver is studied. A novel outer bound on the capacity with an average input power constraint is derived as a function of the oversampling factor. This outer bound yields the degrees of freedom for the scenario in which the oversampling factor grows with the transmit power PP as PαP^{\alpha}. The result shows, perhaps surprisingly, that the largest pre-log that can be attained with phase modulation at high signal-to-noise ratio is at most 1/41/4.Comment: 5 pages, 1 figure, Submitted to Intern. Workshop Inf. Theory (ITW) 201
    corecore