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OVERSAMPLING OF WAVELET FRAMES FOR REAL DILATIONS

MARCIN BOWNIK AND JAKOB LEMVIG

Abstract. We generalize the Second Oversampling Theorem for wavelet frames and
dual wavelet frames from the setting of integer dilations to real dilations. We also
study the relationship between dilation matrix oversampling of semi-orthogonal Parseval
wavelet frames and the additional shift invariance gain of the core subspace.

1. Introduction

Oversampling of wavelet frames has been a subject of extensive study by several au-
thors dating back to the early 1990’s. The first oversampling results are due to Chui
and Shi [16, 17], who proved that oversampling by odd factors preserves tightness of
dyadic affine frames. This is now the central result of the subject known as the Second
Oversampling Theorem. Its higher dimensional generalizations to integer matrix dila-
tions were studied by Chui and Shi [18], Johnson [27], Laugesen [30], Ron and Shen [31].
In particular, these authors introduced (in several equivalent forms) the class of over-
sampling matrices “relatively prime” to a fixed dilation A and they established several
oversampling results for (not necessarily tight) affine frames. Dutkay and Jorgensen [23]
shed a new light on these results by showing that oversampling of orthonormal (or frame)
wavelets by such matrices leads to orthonormal (or frame) super-wavelets, respectively.

Chui and Sun [22] have completed the understanding of the case of integer dilations
by showing that the class of “relatively prime” matrices is optimal for the Second Over-
sampling Theorem. That is, if an oversampling matrix falls out of this class, then the
oversampling does not preserve tight frame property in general. However, it is possible
to give a characterization of oversampling matrices preserving tightness once affine frame
generators are chosen. These results are also due to Chui and Sun [21, 22] who extended
earlier results by Catalán [13].

Despite this progress, much less is known on oversampling of affine systems gener-
ated by non-integer dilations. Chui, Czaja, Maggioni, and Weiss [15] have proved some
results on the oversampling of tight affine frames and dual affine frames generated by
special classes of real dilations. Hernández, Labate, Weiss, and Wilson [25] extended the
Second Oversampling Theorem to (not necessarily tight) affine frames associated with
rational dilations. Moreover, they also considered more general types of scale adaptive
oversampling typically arising in the study of quasi-affine systems, see also [6, 8, 20, 31].
However, these results did not attempt to cover all possible real dilations.
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The goal of this paper is to extend the Second Oversampling Theorem to arbitrary real
dilations. We propose yet another condition on the oversampling lattice which guarantees
preservation of frame bounds of the oversampled affine system. In the case of integer
dilations, our condition is easily seen to be equivalent with the previously mentioned
optimal “relative prime” condition. Moreover, in the case of rational dilations, our result
generalizes the above mentioned result in [25]. Since our condition is applicable for
general real dilations, including non-integer classes of dilations considered in [15, 25], it
unifies and extends previous results. In particular, our oversampling result is applicable
both for non-tight frames and dual affine frames.

To achieve our goal we introduce and study new concepts in the theory of lattices
involving approximate representatives of distinct cosets and approximate duals. We
have built our methods from scratch since we could not find similar results in the existing
literature. We believe that our results could be of independent interest. There are two key
results worth mentioning here. Our first theorem shows the existence of an approximate
constellation for a suitable collection of lattices. In proving this result we have adapted
the notion of a constellation, which is borrowed from the coding theory as in the work
of Calderbank and Sloane [11], to the setting of approximate coset representatives. Our
second result is an extension of the duality identity

(Γ ∩ Λ)∗ = Γ∗ + Λ∗ for lattices Λ, Γ ⊂ Rn.

We establish an analogue of this identity for finitely generated (but not necessarily dis-
crete) subgroups Γ ⊂ Rn in terms of approximate duals. This is shown using arguments
involving uniform distribution of sequences [28].

The remaining elements of our techniques are more standard and involve the use of
almost periodic functions. This technique was pioneered by Laugesen [29, 30] in his work
on translational averaging of the wavelet functional, and later extended by Hernández,
Labate, Weiss, and Wilson [24, 25], and the authors [8]. Finally, the last section relies on
a general result about shift-invariance gain of principal shift-invariant spaces. This is a
higher dimensional analogue of a result due to Aldroubi, Cabrelli, Heil, Kornelson, and
Molter [1].

The paper is organized as follows. In Section 2 we introduce and study the notions of
approximate transversals and approximate duals. In Section 3 we show the generalization
of the Second Oversampling Theorem to real dilations. In Section 4 we show oversampling
results for dual affine frames. We also give a counterexample to one of the results claimed
in the paper of Chui, Czaja, Maggioni, and Weiss [15]. Finally, in Section 5 we show
results on the equivalence of tight frame preservation for dilation matrix oversampling of
the translation lattice and the membership in Behera-Weber classes of wavelets [2, 33].

We end this introduction by reviewing some basic definitions. A frame for a separable
Hilbert space H is a countable collection of vectors {fj}j∈J for which there are constants
0 < C1 ≤ C2 <∞ such that

C1 ‖f‖
2 ≤

∑

j∈J

∣

∣〈f, fj〉
∣

∣

2
≤ C2 ‖f‖

2 for all f ∈ H.
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If the upper bound in the above inequality holds, then {fj} is said to be a Bessel sequence
with Bessel constant C2. A frame {fj} is said to be tight if we can choose C1 = C2; if
furthermore C1 = C2 = 1, the sequence {fj} is said to be a Parseval frame.

Two Bessel sequences {fj} and {gj} are said to be dual frames if

f =
∑

j∈J
〈f, gj〉fj for all f ∈ H.

It can be shown that two such Bessel sequences indeed are frames, and we shall say that
the frame {gj} is dual to {fj}, and vice versa. The book by Christensen [14] serves as
an introduction to the frame theory.

For f ∈ L1(Rn), the Fourier transform is defined by

F f(ξ) = f̂(ξ) =

∫

Rn

f(x)e−2πi〈ξ,x〉dx

with the usual extension to L2(Rn). We will frequently prove our results on the following
dense subspace of L2(Rn)

D =
{

f ∈ L2(Rn) : f̂ ∈ L∞(Rn) and supp f̂ is compact in Rn \ {0}
}

. (1.1)

2. Approximate transversals and duals

In this section we introduce some new notions in the theory of lattices which are
understood here as discrete subgroups of Rn. We refer to the book by Cassels [10]
for basic properties of lattices. In particular, we introduce and study the notions of:
approximate representatives of distinct cosets, an approximate transversal constellation,
and an approximate dual. We shall build our theory from scratch since we could not find
such results in the existing literature.

The notion of a constellation is frequently used in the coding theory. In particular,
Calderbank and Sloane [11] have investigated signal constellations consisting of a finite
number of points from a lattice Λ, with an equal number of points from each coset of a
sublattice Γ ⊂ Λ. We shall use the same notion albeit in the approximate sense defined
below.

Definition 2.1. Suppose that Γ ⊂ Λ are two full rank lattices in Rn and ε ≥ 0. We say
that a set D = {d1, . . . , dl}, where l = #|Λ/Γ| is the order of the quotient group, is an
ε-approximate transversal of Λ/Γ if there exists set D′ = {d′1, . . . , d

′
l} of representatives

of distinct cosets of Λ/Γ such that |di−d
′
i| ≤ ε for all i = 1, . . . , l. We say that a multiset

(set with multiplicities) K is an ε-approximate transversal constellation if it is a union
of a finite number of ε-approximate transversals.

The following result is a generalization of [26, Lemma 23.19], see also [8, Lemma 3.6].

Lemma 2.2. Suppose that Γ ⊂ Λ are two full rank lattices in Rn. Suppose D is an
ε-approximate transversal constellation of Λ/Γ for some ε ≥ 0. Then

1

#|D|

∑

d∈D
e2πi〈m,d〉 =

{

1 +O(|m| ε) m ∈ Λ
∗,

O(|m| ε) m ∈ Γ
∗ \ Λ∗,

as ε→ 0.
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Proof. Let D′ = {d′1, . . . , d
′
l} be representatives of distinct cosets of Λ/Γ, and let D =

{d1, . . . , dl} be an ε-approximate transversal of Λ/Γ. Then, for any m ∈ Rn ⊃ Γ
∗,

∣

∣

∣

∣

∣

l
∑

i=1

e2πi〈m,di〉−
l
∑

i=1

e2πi〈m,d′i〉

∣

∣

∣

∣

∣

≤
l
∑

i=1

∣

∣

∣
e2πi〈m,di〉− e2πi〈m,d′i〉

∣

∣

∣

≤
l
∑

i=1

2π |〈m, di〉− 〈m, d′i〉|

≤
l
∑

i=1

2π |m| |di − d′i| ≤ 2π |m| l ε.

Since, by [26, Lemma 23.19], we have

1

l

l
∑

i=1

e2πi〈m,d′i〉 =

{

1 m ∈ Λ
∗,

0 m ∈ Γ
∗ \ Λ∗,

the lemma is proved. �

We shall need a result about the existence of an approximate transversal constellation
for suitable collections of lattices which is of independent interest. A prototype of this
result for exact coset representatives takes the following form.

Lemma 2.3. Suppose that we have a finite number of full rank lattices Γi ⊂ Λi, i =
1, . . . , J , and let li = #|Λi/Γi|. Assume that there exists a full rank lattice ∆ such that

∆ ⊂
J
⋂

i=1

Λi, (2.1)

Λi ⊂ ∆+ Γi for each i = 1, . . . , J. (2.2)

Then, there exists a finite multiset K ⊂ ∆ such that

#|K ∩ (γ + Γi)|

#|K|
=

1

li
for all γ ∈ Λi, i = 1, . . . , J.

In other words, K consists of an equal number of points from each coset of Λi/Γi, simul-
taneously for all i = 1, . . . , J .

In general, the condition (2.1) is too restrictive for our purposes since the intersection
⋂J

i=1 Λi might be trivial and then (2.2) can not hold. To remedy this situation, we shall
need a variant of Lemma 2.3 for approximate coset representatives. We shall skip the
proof of Lemma 2.3 since it follows by a direct modification of the proof of Lemma 2.4.

Lemma 2.4. Suppose that we have a finite number of full rank lattices Γi ⊂ Λi, i =
1, . . . , J , and let li = #|Λi/Γi|. Assume that for all ε > 0 we have

Λi ⊂ ∆(ε) + Γi for each i = 1, . . . , J, where (2.3)

∆(ε) :=
J
⋂

i=1

(Λi +B(0, ε)). (2.4)
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Then, for all sufficiently small ε > 0 there exists a finite multiset K = K(ε) ⊂ ∆(ε) such
that

#|K ∩ (γ + Γi +B(0, ε))|

#|K|
=

1

li
for all γ ∈ Λi, i = 1, . . . , J. (2.5)

Lemma 2.4 can be also formulated in the language of approximate transversals. Sup-
pose that for all ε > 0 there exists a set ∆ laying in the ε-neighborhood of each Λi and
containing ε-approximate transversals of each Λi/Γi. Then, there exists a subset K ⊂ ∆
which is ε-approximate transversal constellation simultaneously for each Λi/Γi.

Proof of Lemma 2.4. For any ε > 0 we define δ = ε/J . For each i = 1, . . . , J , by (2.3)
we can choose δ-approximate transversal Di := {di1, . . . , d

i
li
} ⊂ ∆(δ) of Λi/Γi. Define the

set K as an algebraic sum

K = D1 + . . .+DJ .

Treating K as a multiset, K has exactly
∏J

i=1 li elements. Moreover, since each Di ⊂
∆(δ), we have that K ⊂ ∆(δJ) = ∆(ε).

Fix some 1 ≤ i0 ≤ J and consider

k0 =
J
∑

i=1, i 6=i0

dimi
, for some choice of 1 ≤ mi ≤ li. (2.6)

We claim that {di01 + k0, . . . , d
i0
li0

+ k0} is a ε-approximate transversal of Λi0/Γi0 . Indeed,

by (2.4) we can find D′i = {d′i1 , . . . , d
′i
li
} ⊂ Λi0 such that

|d′ij − dij| < δ for i = 1, . . . , J, j = 1, . . . , li. (2.7)

Furthermore, if δ > 0 is sufficiently small, then D′i0 is an exact transversal (a set of
representatives of distinct cosets) of Λi0/Γi0. Let

k′0 =

J
∑

i=1, i 6=i0

d′imi
∈ Λi0 .

Clearly, {d′i01 + k′0, . . . , d
′i0
li0

+ k′0} is also an exact transversal of Λi0/Γi0 . Thus, by (2.7)

{di01 + k0, . . . , d
i0
li0

+ k0} is a δJ = ε-approximate transversal of Λi0/Γi0. This proves the

claim.
Since there are precisely

∏J
i=1,i 6=i0

li elements k0 of the form (2.6), K is a union of the

same number of ε-approximate transversals of Λi0/Γi0. Take sufficiently small ε > 0, say

0 < ε < min{|λ| : 0 6= λ ∈ Λi0}/2.

Then, we observe that ε-neighborhoods of distinct cosets of Λi0/Γi0 are disjoint. Thus,
for any γ ∈ Λi0 ,

#|K ∩ (γ + Γi0 +B(0, ε))|

#|K|
=

∏J
i=1,i 6=i0

li
∏J

i=1 li
=

1

li0
.

Since 1 ≤ i0 ≤ J was arbitrary, this shows that (2.5) holds for all sufficiently small
ε > 0. �
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We shall also need some additional results about approximate duals of finitely gener-
ated subgroups of Rn which are of independent interest.

Definition 2.5. Suppose that F ⊂ Rn and ε ≥ 0. Define an ε-approximate dual of F as

F ∗,ε = {x ∈ Rn : 〈x, g〉 ∈ Z+ [−ε, ε] for all g ∈ F}.

In the case when ε = 0, we say that F ∗,0 is an exact dual of F , which is denoted simply
by F ∗.

The following basic proposition justifies the name for an approximate dual.

Proposition 2.6. Suppose that Λ is a full rank lattice and F is a basis of Λ. Then, for
sufficiently small ε > 0 we have Λ

∗,ε = Λ
∗. Furthermore, for every ε > 0 there exist

δ, ε′ > 0 such that

Λ
∗ +B(0, ε′) ⊂ F ∗,δ ⊂ Λ

∗ +B(0, ε).

The proof of Proposition 2.6 is left to the reader.

Lemma 2.7. Suppose that G is a finitely generated subgroup of Rn such that G ∩ Zn =
{0}. Then for any finite subset F ⊂ G, ε > 0, and full rank sublattice Γ ⊂ Zn we have

F ∗,ε + Γ = Rn. (2.8)

Proof. First we shall establish a slightly weaker conclusion

F ∗,ε + Zn = Rn. (2.9)

Then, we shall see that (2.9) implies (2.8).
Assume first that F = {g1, . . . , gd} ⊂ G is linearly independent over Q. For any k ∈ Zn

we define a vector xk = (〈k, g1〉, . . . , 〈k, gd〉) ∈ Rd. Let k1, k2, . . . be an ordering of all
elements of Zn such that i ≤ j implies ||ki||∞ ≤ ||kj||∞. We claim that the sequence
{xki}i∈N of vectors in Rd is uniformly distributed (u. d.) mod 1. By the Weyl Criterion,
see [28, Theorem 6.2 in Chapter 1], this is equivalent to the fact that the sequence of
scalars {〈h, xki〉}i∈N is u. d. mod 1 for any 0 6= h ∈ Zd. Observe that

〈h, xk〉 = 〈k, y〉, where y =

d
∑

j=1

hjgj and h = (h1, . . . , hd).

Moreover, by our hypothesis G ∩ Zn = {0}, y has at least one irrational coordinate.
Repeating the same argument as in [7, Lemma 3.2 in Chapter 2] shows that the sequence
{〈ki, y〉}i∈N is u. d. mod 1. This proves the claim. As a consequence (2.9) holds.

Next, let F = {g1, . . . , gd′} ⊂ G be an arbitrary finite subset of G. By rearranging
the order of elements in F we can assume that for some d ≤ d′, {g1, . . . , gd} are linearly
independent over Q, and the rest of elements of F are linear combinations of thereof.
That is, for d < i ≤ d′

gi =

d
∑

j=1

cjgj , cj ∈ Q.
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Thus, we can find N ∈ N such that for d < i ≤ d′

gi =
d
∑

j=1

dj g̃j, dj ∈ Z, (2.10)

where g̃j = gj/N . Let F̃ = {g̃1, . . . , g̃d, gd+1, . . . , gd′} ⊂ 1
N
G. By the already established

case we have
{g̃1, . . . , g̃d}

∗,ε + Zn = Rn.

Since ε > 0 is arbitrary, using (2.10) we can deduce that

F̃ ∗,ε + Zn = Rn.

We also observe that F̃ ∗,ε ⊂ F ∗,Nε. This proves (2.9) since ε > 0 is arbitrary.
Finally, let Γ ⊂ Zn be a full rank lattice. There exists N ∈ N such that NZn ⊂ Γ. The

assumption G ∩ Zn = {0} actually implies that G ∩ Qn = {0}. In particular, we have
(NG) ∩ Zn = {0}. Applying (2.9) to a finite subset NF ⊂ NG we have

Rn = (NF )∗,ε + Zn =
1

N
F ∗,ε + Zn.

Thus,
Rn = F ∗,ε +NZn ⊂ F ∗,ε + Γ,

which completes the proof of Lemma 2.7. �

Our next result is a generalization of a duality identity for lattices. If G is a lattice,
then we have (G ∩ Zn)∗ = G∗ + Zn, see Corollary 2.9. However, this conclusion might
fail if G is not a discrete subgroup of Rn. For example, if G ⊂ Rn is dense in Rn and
G ∩ Zn = {0}, then this identity fails. Nevertheless, we have the following extension of
this identity as a consequence of Lemma 2.7.

Theorem 2.8. Suppose that G is a finitely generated subgroup of Rn. Define a lattice
(not necessarily full rank) Γ = G ∩ Zn. Then for any finite subset F ⊂ G and ε > 0 we
have

Γ
∗ ⊂ F ∗,ε + Zn.

Proof. Define the “rational” subgroup of G by G1 = G∩Qn. Since G is finitely generated,
G1 ⊂ Qn is a lattice (not necessarily full rank). Observe that the quotient group G/G1

is torsion free and finitely generated. Hence, using the structure theorem for finitely
generated abelian groups, we can find a complimentary subgroup G2 ⊂ G such that the
group G decomposes as an algebraic sum G = G1 +G2 with G1 ∩G2 = {0}.

Let F = {g1, . . . , gd} ⊂ G be any finite subset. We decompose each element of F

as gi = g
(1)
i + g

(2)
i , where g

(j)
i ∈ Gj , j = 1, 2. Let Fj = {g

(j)
1 , . . . , g

(j)
d }. Observe that

(F1)
∗,ε ∩ (F2)

∗,ε ⊂ F ∗,2ε. Moreover, we have G∗
1 ⊂ (F1)

∗,ε. Thus, it suffices to show that

Γ
∗ ⊂ (G∗

1 ∩ (F2)
∗,ε) + Zn. (2.11)

Take any x ∈ Γ
∗. Since Γ = G∩Zn = G1 ∩Zn, by taking duals we have Γ

∗ = G∗
1 +Zn.

Thus, we can write x = x1 + z1, where x1 ∈ G∗
1 and z1 ∈ Zn. Since G∗

1 ∩Zn is a full rank
lattice, by Lemma 2.7 we have

(F2)
∗,ε + (G∗

1 ∩ Zn) = Rn.
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Hence, we can write x1 = x2 + z2, where x2 ∈ (F2)
∗,ε and z2 ∈ G∗

1 ∩ Zn. Consequently,
x2 ∈ (F2)

∗,ε ∩G∗
1 and x− x2 = z1 + z2 ∈ Zn. This proves (2.11) and completes the proof

of Theorem 2.8. �

As a consequence of Theorem 2.8 we can deduce the duality identity for lattices (2.12).

Corollary 2.9. Suppose Γ and Λ are two lattices in Rn. Then,

(Γ ∩ Λ)∗ = Γ∗ + Λ∗. (2.12)

Proof. The inclusion ⊃ follows immediately from the definition of a dual lattice to Γ∩Λ.
To show the converse inclusion we can assume that both Λ and Γ are full rank lattices.
Indeed, if Λ is not full rank lattice, then we can find a full rank lattice Λ0 ⊃ Λ such
that Γ ∩ Λ0 = Γ ∩ Λ. Assuming that (2.12) holds for the pair Γ and Λ0 yields the same
conclusion for Γ and Λ. An identical argument works for Γ. Moreover, by the change of
basis argument we can assume that Γ = Zn.

Let F be a basis of Λ. Applying Theorem 2.8 with G = Λ yields

(Λ ∩ Zn)∗ ⊂ F ∗,δ + Zn for all δ > 0.

Applying Proposition 2.6 we have

(Λ ∩ Zn)∗ ⊂ Λ
∗ + Zn +B(0, ε) for all ε > 0.

Thus, (Λ ∩ Zn)∗ ⊂ Λ∗ + Zn as required. This completes the proof of Corollary 2.9. �

It is worth mentioning that the other duality identity

(Γ+ Λ)∗ = Γ
∗ ∩ Λ

∗

is much easier to prove since it follows directly from the definition of a dual lattice.
Corollary 2.9 can be also deduced from it and the fact that Γ

∗∗ = Γ for an arbitrary
subgroup Γ ⊂ Rn.

3. Oversampling

In this section we introduce our condition on the oversampling lattice (3.3) to show
the generalization of the Second Oversampling Theorem in the setting of real dilations.

3.1. Oversampling the wavelet system. Let Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn), let Γ be
a lattice in Rn, and let A be a fixed n × n expansive matrix, i.e., all eigenvalue λ of A
satisfy |λ| > 1. The wavelet system generated by Ψ is

A(Ψ) = {ψj,γ : j ∈ Z, γ ∈ Γ, ψ ∈ Ψ} , (3.1)

where
ψj,γ := DAjTγψ = |detA|j/2 ψ(Aj · −γ) for j ∈ Z, γ ∈ Γ.

Here, DAf(x) = | detA|1/2f(Ax) is the dilation operator and Tγf(x) = f(x − γ) is a
translation operator. If we need to stress the dependence of the underlying dilation
matrix A and translation lattice Γ, we say that the wavelet system A(Ψ) is associated
with (A, Γ), or we use the notation A(Ψ, A, Γ) for (3.1).

In our study of wavelet systems, it will not be necessary to consider arbitrary transla-
tion lattices Γ, and we will restrict our attention to the standard translation lattice Zn.
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Indeed, for A ∈ GLn(R) expansive and Γ = PZn for some P ∈ GLn(R) consider the
wavelet system A(Ψ, A, Γ). By the commutator relations

TkDA = DATAk and D(P−1AP )jDP = DPDAj ,

we see that

A(DPΨ, Ã,Z
n) = DP (A(Ψ, A, Γ)) , (3.2)

where the matrix Ã := P−1AP is similar to A. Observe that a matrix similar to an
expansive matrix is again expansive as it has the same eigenvalues. Since DP is unitary,
properties such as the frame and Bessel property carry over between the two systems.
Hence, it is possible to reduce studies of wavelet systems with general translation lattices
to the setting of integer lattice. An example of such reduction technique is given in
Corollary 3.3.

Therefore, we can without loss of generality restrict attention to wavelet systems as-
sociated with (A,Zn), i.e.,

A(Ψ) = {ψj,k : j ∈ Z, k ∈ Zn, ψ ∈ Ψ} ,

and oversampling of such systems. Let Λ be a lattice in Rn containing the integer lattice
Zn, i.e., Zn ⊂ Λ. Then,

Λ
∗ ⊂ Zn ⊂ Λ,

where the dual lattice of Λ is

Λ
∗ = {η ∈ Rn : 〈η, λ〉 ∈ Z for all λ ∈ Λ}.

The Λ-oversampled wavelet system is just a normalized version of the original wavelet
system with translation lattice Λ:

A(d(Λ)1/2Ψ, A,Λ) =
{

d(Λ)1/2 ψj,λ : j ∈ Z, λ ∈ Λ, ψ ∈ Ψ
}

.

Here, d(Λ) = | detP | is the determinant of the lattice Λ = PZn for some P ∈ GLn(R).
Note that 0 < d(Λ) ≤ 1 ≤ d(Λ∗) and that d(Λ) = 1 only when Λ = Zn.

Given a matrix B ∈ GLn(R) and a lattice Λ, we define a countable subgroup of Rn by
∑

j∈Z
Bj

Λ
∗ = {x ∈ Rn : x =

∑

j∈Z
xj , xj ∈ Bj

Λ
∗, xj = 0 for all but finitely many j}.

Once the dilation A is chosen, our convention is to let B = AT . We shall prove our main
oversampling result under the assumption that

(

∑

j∈Z
Bj

Λ
∗
)

∩ Zn ⊂ Λ
∗. (3.3)

To achieve this we shall establish the following key lemma as a consequence of Lemma
2.4 and Theorem 2.8.

Lemma 3.1. Let A ∈ GLn(R) be expansive and let Λ be a lattice in Rn containing Zn and
satisfying condition (3.3). Then, for any J ∈ N and ε > 0, there exists a set K = KJ,ε,
which is ε-approximate transversal constellation of Aj

Λ/AjZn for all |j| ≤ J .
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Proof. Fix J ∈ N and let F =
⋃

|j|≤2J B
jF0, where F0 is a basis of the lattice Λ

∗. By
Proposition 2.6 one can show that for any ε > 0 there exists δ > 0 such that

F ∗,δ ⊂
⋂

|j|≤2J

(Aj
Λ+B(0, ε)).

Thus, applying Theorem 2.8 to G =
∑

|j|≤2J B
j
Λ
∗ and using G ∩ Zn ⊂ Λ

∗ yields

Λ ⊂
⋂

|j|≤2J

(Aj
Λ+B(0, ε)) + Zn.

For any ε > 0 we can find ε′ > 0 such that Ai(B(0, ε′)) ⊂ B(0, ε) for |i| ≤ J . Thus, the
above formula can be strengthened to

Ai
Λ =

⋂

|j|≤2J

(Ai+j
Λ+Ai(B(0, ε′)))+AiZn ⊂

⋂

|j|≤J

(Aj
Λ+B(0, ε))+AiZn for all |i| ≤ J.

For |i| ≤ J , we define lattices Λi = Ai
Λ and Γi = AiZn. By Lemma 2.4, for each

ε > 0 there exists a set K = KJ,ε with cardinality #|K| = (#|Λ/Zn|)2J+1, which is
ε-approximate transversal constellation of each Λi/Γi, |i| ≤ J . �

3.2. Second Oversampling Theorem for real dilations. Our main oversampling
result takes the following simple form.

Theorem 3.2. Let A ∈ GLn(R) be expansive, B = AT , and Ψ ⊂ L2(Rn). Take Λ ⊃ Zn

to be a lattice in Rn satisfying (3.3). If A(Ψ, A,Zn) is a frame with bounds C1 and C2,
then so is A(d(Λ)1/2Ψ, A,Λ).

Theorem 3.2 automatically implies a more general result for wavelet systems associated
with an arbitrary dilation lattice Γ.

Corollary 3.3. Let A ∈ GLn(R) be expansive, B = AT , Ψ ⊂ L2(Rn), and Γ be a full
rank lattice. Assume that the oversampling lattice Λ ⊃ Γ satisfies

(

∑

j∈Z
Bj

Λ
∗
)

∩ Γ
∗ ⊂ Λ

∗. (3.4)

If A(Ψ, A, Γ) is a frame with bounds C1 and C2, then so is A((d(Λ)/d(Γ))1/2Ψ, A,Λ).

Proof. Consider the dilation matrix Ã = P−1AP and the oversampling lattice Λ̃ = P−1
Λ,

where Γ = PZn for some P ∈ GLn(R). Then, the transpose B̃ = ÃT = P TB(P T )−1 and

the dual lattice Λ̃
∗ = P T

Λ
∗. The condition (3.4) implies that

(

∑

j∈Z
B̃j

Λ̃
∗
)

∩ Zn =

(

∑

j∈Z
P TBj

Λ
∗
)

∩ Zn = P T

(

(

∑

j∈Z
Bj

Λ
∗
)

∩ Γ
∗

)

⊂ P T
Λ
∗ = Λ̃

∗.

Thus, (3.3) holds for the dilation B̃ and the lattice Λ̃. By our hypothesis, the identity

(3.2) implies that A(DPΨ, Ã,Z
n) is a frame with bounds C1 and C2. Therefore, Theorem

3.2 implies that

A(d(Λ̃)1/2DPΨ, Ã, Λ̃) = DP (A(d(Λ̃)1/2Ψ, A, P Λ̃)) = DP (A((d(Λ)/d(Γ))1/2Ψ, A,Λ))

is also a frame with the same bounds. This concludes the proof of Corollary 3.3. �
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In order to prove Theorem 3.2, we need the following variant of [8, Proposition 3.4]
for an arbitrary translation lattice Γ.

Proposition 3.4. Let A ∈ GLn(R) be expansive, B = AT , Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn),
and Γ be a full rank lattice. Suppose that each ψ ∈ Ψ satisfies the local integrability
condition

∑

j∈Z

∣

∣

∣
ψ̂(B−jξ)

∣

∣

∣

2

∈ L1
loc
(Rn \ {0}). (3.5)

Then, for each f ∈ D, the function

w(x) =
∑

g∈A(d(Γ)1/2Ψ,A,Γ)

|〈Txf, g〉|
2 = d(Γ)

L
∑

l=1

∑

j∈Z

∑

γ∈Γ

∣

∣〈Txf,DAjTγψl〉
∣

∣

2

is an almost periodic function that coincides pointwise with the absolutely convergent
series

w(x) =

L
∑

l=1

∑

j∈Z

∑

m∈Γ∗
cj,l(m)e2πi〈B

jm,x〉, (3.6)

where

cj,l(m) =

∫

Rn

f̂(ξ)f̂(ξ +Bjm) ψ̂l(B−jξ)ψ̂l(B
−j(ξ +Bjm)) dξ.

We also use the notation:

N(Txf, Γ) =
∑

g∈A(d(Γ)1/2Ψ,A,Γ)

|〈Txf, g〉|
2 , (3.7)

hence N(f, Γ) = w(0) =
∑L

l=1

∑

j∈Z
∑

m∈Γ∗ cj,l(m).
The proof of Theorem 3.2 relies on the following key result on translational averaging

of wavelet functionals motivated by the results of Laugesen [30]. This theorem is a
consequence of our results on the existence of simultaneous approximate transversal
constellations, see Lemma 3.1.

Theorem 3.5. Let A ∈ GLn(R) be expansive, Ψ ⊂ L2(Rn), and let Λ be an lattice
in Rn containing Zn and satisfying condition (3.3). Suppose that the wavelet system
A(Ψ, A,Zn) is Bessel sequence. Then, there exists a sequence {DJ}J∈N of finite subsets
of Rn such that

N(f,Λ) = lim
J→∞

1

#|DJ |

∑

d∈DJ

N(Tdf,Z
n) for f ∈ D, (3.8)

where D is given by (1.1) and N by (3.7).

Proof. Since A(Ψ, A,Zn) is a Bessel sequence, the series in (3.5) defines a bounded func-
tion, see [8, 24]. Therefore, we can freely apply Proposition 3.4.

Fix J ∈ N and f ∈ D . Let ε > 0, and let K = KJ,ε be an ε-approximate transversal
constellation of Aj

Λ/AjZn for all |j| ≤ J as provided by Lemma 3.1. We want to express



12 MARCIN BOWNIK AND JAKOB LEMVIG

N(f,Λ) as an average of N(Tdf,Z
n) over such ε-approximate transversal constellations

of Aj
Λ/AjZn. Thus, we consider

1

#|K|

∑

d∈K
N(Tdf,Z

n) =
1

#|K|

∑

d∈K

L
∑

l=1

∑

|j|≤J

∑

m∈Zn

cj,l(m) e2πi〈B
jm,d〉

+
1

#|K|

∑

d∈K

L
∑

l=1

∑

|j|>J

∑

m∈Zn

cj,l(m) e2πi〈B
jm,d〉

=: I1(J) + I2(J), (3.9)

which follows by (3.6). By the absolute convergence of the sum above, we conclude that
I2(J) → 0 as J → ∞ regardless of the choice of K. Let δm,Λ∗ = 1 if m ∈ Λ

∗ and 0
otherwise. By Lemma 2.2 we have that
∣

∣

∣

∣

I1(J)−
L
∑

l=1

∑

|j|≤J

∑

m∈Λ∗

cj,l(m)

∣

∣

∣

∣

=

∣

∣

∣

∣

L
∑

l=1

∑

|j|≤J

∑

m∈Zn

cj,l(m)

(

1

#|K|

∑

d∈K
e2πi〈B

jm,d〉 − δm,Λ∗

)
∣

∣

∣

∣

≤
L
∑

l=1

∑

|j|≤J

∑

m∈Zn

|cj,l(m)|min{O(|Bjm|ε), 1} → 0

as ε → 0. Indeed, the last step follows from the absolute convergence of the series
∑

l,j,m cj,l(m) and the Lebesgue Dominated Convergence Theorem. Consequently, we

can find a sequence {DJ}J∈N of finite subsets of Rn defined by DJ = KJ,ε for some
sufficiently small ε = ε(J) > 0 such that

1

#|DJ |

∑

d∈DJ

N(Tdf,Z
n) = I1(J) + I2(J) →

L
∑

l=1

∑

j∈Z

∑

m∈Λ∗

cj,l(m) = N(f,Λ)

as J → ∞. This completes the proof of Theorem 3.5. �

Proof of Theorem 3.2. Assume that the wavelet system A(Ψ, A,Zn) is a frame for L2(Rn)
with bounds C1, C2. By our hypothesis there are constants C1, C2 > 0 so that

C1 ‖f‖
2 ≤ N(f,Zn) ≤ C2 ‖f‖

2 ∀f ∈ L2(Rn).

Let {DJ}J∈N be a sequence of finite subsets such that (3.8) holds. Fix J ∈ N. For each
d ∈ DJ we have

C1 ‖f‖
2 ≤ N(Tdf,Z

n) ≤ C2 ‖f‖
2 ∀f ∈ L2(Rn),

where we have used that ‖Txf‖ = ‖f‖ for x ∈ Rn. Adding these inequalities for each
d ∈ DJ yields:

#|DJ |C1 ‖f‖
2 ≤

∑

d∈DJ

N(Tdf,Z
n) ≤ #|DJ |C2 ‖f‖

2 .

Taking the limit J → ∞ gives us

C1 ‖f‖
2 ≤ lim

J→∞

1

#|DJ |

∑

d∈DJ

N(Tdf,Z
n) ≤ C2 ‖f‖

2
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for all f ∈ L2(Rn). By an application of Theorem 3.5, we arrive at

C1 ‖f‖
2 ≤ N(f,Λ) ≤ C2 ‖f‖

2 for f ∈ D .

Extending these inequalities to all of L2(Rn) by a standard density argument completes
the proof of Theorem 3.2. �

Example 1 (Rational dilations in one dimension). Let A = BT = p/q ∈ Q for relatively
prime p, q ∈ N, and let Λ = 1/λZ for some λ ∈ Z. Then Λ

∗ = λZ, and condition (3.3)
reads

(

∑

j∈Z

(p

q

)j

λZ

)

∩ Z ⊂ λZ. (3.10)

Since, for J ∈ Z,
∑

|j|≤J

(p

q

)j

Z =
1

(pq)J
Z,

condition (3.10) is equivalent to

λZ ∩ (pq)JZ ⊂ λ(pq)JZ ∀J ∈ Z,

or in other words,

lcm(λ, (pq)J)Z ⊂ λ(pq)JZ ∀J ∈ Z.

Hence, λ needs to be relatively prime to (pq)J for J ∈ N, or simply, relatively prime to
p and q. In this case, B = p/q and Λ

∗ = λZ satisfy (3.3). Thus, if A(Ψ, p/q,Z) is a
frame with bounds C1 and C2, then so is A(λ−1/2Ψ, p/q, 1/λZ) whenever λ is relatively
prime to p and q. However, note that such B = p/q and Λ

∗ = λZ do not satisfy either
of the conditions (i)–(iv) in Proposition 3.6 in the next section, in particular, BΛ

∗ 6⊂ Λ
∗.

Therefore, none of the previously known equivalent conditions on oversampling lattices
in the integer setting, which are described in the next subsection, are satisfactory for
non-integer dilations.

3.3. Related work for integer and rational dilations. The Second Oversampling
Theorem is well-known for integer, expansive dilations and assumptions on the oversam-
pling lattice Λ as (3.11) or (3.12) below. We briefly review the relationship between
previous results and Theorem 3.2.

Laugesen [30, Theorem 6.1] proved the Second Oversampling Theorem under the as-
sumption that A is prime relative to Λ and that A preserves the lattice Λ:

BZn ∩ Λ
∗ ⊂ BΛ

∗ ⊂ Λ
∗. (3.11)

The result in [30, Theorem 6.1] is stated for both expansive and amplifying dilations; in
this paper we only consider expansive matrices.

The formulation of Ron and Shen [31, Theorem 4.19] of the same result uses the
assumption

BjZn ∩ Λ
∗ = Bj

Λ
∗ for all j ≥ 0. (3.12)

This condition is equivalent to (3.11). It is obvious (take j = 1) that (3.12) implies that
BΛ

∗ ⊂ Λ
∗.
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Yet another equivalent set of assumptions is used in the formulation of the Second
Oversampling Theorem of Johnson [27, Theorem 3.2]:

AΛ ⊂ Λ and A−1Zn ∩ Λ = Zn. (3.13)

Note that the assumption Zn ⊂ Λ in [27, Definition 2.2] is not necessary since it is implied
by (3.13).

Finally, Chui and Sun [21, 22] have completed the theory of oversampling of tight
affine systems with integer dilations. In [22, Theorem 4.1] they characterized lattices Λ

for which the conclusion of the Second Oversampling Theorem holds. The oversampling
by Λ preserves tightness for all tight affine frames if and only if Λ satisfies (3.12) and
hence any of its equivalent forms listed above. Moreover, Chui and Sun characterized the
preservation of tightness for fixed generators Ψ of tight affine frame in terms of explicit
equations involving generators in the frequency domain and identities involving so-called
“oversampled frame operators” in the space domain.

In light of Chui and Sun results [22], it is not surprising that, for integer dilations,
all of the previously studied conditions on tightness preserving lattices Λ are equivalent
to our newly introduced condition (3.3). We state these conditions in the proposition
below.

Proposition 3.6. Suppose that A = BT ∈ Mn(Z) is invertible and Zn ⊂ Λ. Then, the
following assertions are equivalent:

(i) BZn ∩ Λ
∗ ⊂ BΛ

∗ ⊂ Λ
∗,

(ii) BjZn ∩ Λ
∗ = Bj

Λ
∗ for all j ≥ 0,

(iii) AΛ ⊂ Λ and A−1Zn ∩ Λ = Zn,
(iv) BΛ

∗ ⊂ Λ
∗ and (Λ∗ \BΛ

∗) ⊂ (Zn \BZn),
(v) BjZn ∩ Λ

∗ ⊂ Bj
Λ
∗ for all j ∈ Z.

(vi)
(
∑

j∈ZB
j
Λ
∗) ∩ Zn ⊂ Λ

∗.

Proof. (i) ⇒ (ii): For j = 0 there is nothing to prove since Λ
∗ ⊂ Zn. For j = 1 we only

need to prove BZn ∩ Λ
∗ ⊃ BΛ

∗, but this follows from Λ
∗ ⊂ Zn and BΛ

∗ ⊂ Λ
∗. We now

prove (ii) for j = 2. Using BZn ⊂ Zn and BZn ∩ Λ
∗ ⊂ BΛ

∗ we find

B2Zn ∩ Λ
∗ = B2Zn ∩ Λ

∗ ∩BZn

⊂ B2Zn ∩ BΛ
∗ = B(BZn ∩ Λ

∗)

⊂ B(BΛ
∗) = B2

Λ
∗.

The other inclusion follows from:

B2
Λ
∗ = B(BΛ

∗) ⊂ B(BZn ∩ Λ
∗)

= B2Zn ∩BΛ
∗ ⊂ B2Zn ∩ Λ

∗,

where we have used BΛ
∗ ⊂ Λ

∗ and BZn ∩ Λ
∗ ⊃ BΛ

∗ from the case j = 1. The argumen-
tation is similar for j ≥ 3.

(ii) ⇒ (i): Take j = 1 in (ii), that is, we have BZn ∩ Λ
∗ = BΛ

∗. It follows that
BΛ

∗ ⊂ Λ
∗ and BZn ∩ Λ

∗ ⊂ BΛ
∗.

(ii) ⇔ (iii) is proved in [27, p. 636]; alternatively is (i) ⇔ (iii) proved in [27, p. 637].
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(i) ⇒ (iv) is proved in [30, p. 227]. (iv) ⇒ (i): Suppose x ∈ Λ
∗. If x /∈ BΛ

∗, then
x /∈ BZn. In other words, if x ∈ BZn, then x ∈ BΛ

∗. Hence, BZn ∩ Λ
∗ ⊂ BΛ

∗.
(i) ⇒ (v): This implication is immediate for j ≥ 0 by (ii). If j < 0, then (v) is

equivalent to Zn ∩ B−j
Λ
∗ ⊂ Λ

∗, which holds by BΛ
∗ ⊂ Λ

∗.
(v) ⇒ (i): Taking j = 1 and j = −1 in (v) shows the first and the second inclusion in

(i), respectively.
(v) ⇔ (vi): Take x ∈

∑

j∈ZB
j
Λ
∗. Since (v) ⇒ (i), we know that BΛ

∗ ⊂ Λ
∗. Hence,

x ∈ Bj0Λ
∗ for some j0 ∈ Z. This shows the implication (v) ⇒ (vi). The opposite

implication is trivial. �

Example 2 (Rational dilations in higher dimensions). Hernández, Labate, Weiss, and
Wilson [25, Theorem 2.12] have proved the Second Oversampling Theorem for a class of
rational, expansive dilations A = PQ−1 ∈ GLn(Q), where P,Q ∈ Mn(Z) are invertible,
and P commutes with Q. The assumptions on the oversampling lattice is that

P TZn ∩ Λ
∗ = P T

Λ
∗, QTZn ∩ Λ

∗ = QT
Λ
∗, (3.14)

which are higher dimensional analogues of Example 1. We remark that in [25, Theorem
2.12] it is also assumed that RPR−1, RQR−1 ∈ Mn(Z) for Λ = R−1Zn, but this is
equivalent to P T

Λ
∗ ⊂ Λ

∗ and QT
Λ
∗ ⊂ Λ

∗, and therefore follows from (3.14).
Theorem 2.12 in [25] is in fact a special case of Theorem 3.2. To see this assume that

the assumption of Theorem 2.12 in [25] holds and note that by Proposition 3.6 (i) ⇒ (iv)
it then follows that

(Λ∗ \ P T
Λ
∗) ⊂ (Zn \ P TZn) (3.15)

and

(Λ∗ \QT
Λ
∗) ⊂ (Zn \QTZn). (3.16)

By commutativity of P T and QT , Equation (3.15) implies

(QT
Λ
∗ \ P TQT

Λ
∗) ⊂ (QTZn \ P TQTZn) ⊂ (Zn \ P TQTZn),

which in turn implies that

(Λ∗ \ P TQT
Λ
∗) ⊂

[

(Λ∗ \QT
Λ
∗) ∪QT

Λ
∗] \ P TQT

Λ
∗

⊂
[

(Zn \QTZn) ∪QT
Λ
∗] \ P TQT

Λ
∗

⊂ (Zn \QTZn) ∪ (Zn \ P TQTZn)

= (Zn \ P TQTZn)

where we have used (3.16) in the second step. We have showed that

(Λ∗ \ P TQT
Λ
∗) ⊂ (Zn \ P TQTZn)

holds, which by Proposition 3.6 (iv) ⇒ (v) for B = P TQT implies that

(P TQT )jZn ∩ Λ
∗ ⊂ (P TQT )jΛ∗ for all j ∈ Z,

that is,

Zn ∩ (P TQT )−j
Λ
∗ ⊂ Λ

∗ for all j ∈ Z.
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Since (P T )−J
Λ
∗ =

∑

|j|≤J(P
T )jΛ∗ for any J ∈ N, we have, in particular, that

Zn ∩ (QT )−J
∑

|j|≤J

(P T )jΛ∗ ⊂ Λ
∗,

and by commutativity of QT and P T that

Zn ∩
∑

|j|≤J

(P T )j(QT )−J
Λ
∗ ⊂ Λ

∗.

Since (QT )jΛ∗ ⊂ (QT )−J
Λ
∗ for |j| ≤ J , it then follows that

Zn ∩
∑

|j|≤J

(P T )j(QT )−j
Λ
∗ ⊂ Λ

∗,

which, since J > 0 is arbitrary, implies

Zn ∩
∑

j∈Z
(P T )j(QT )−j

Λ
∗ ⊂ Λ

∗.

Using commutativity of P T and QT , the last equation implies that (3.3) holds.

3.4. Oversampling with the support condition. In the following theorem we relax
the condition (3.3) from Theorem 3.2 by supposing a support condition. The result
resembles somewhat Theorem 3 in [16] referred to as the First Oversampling Theorem.

Theorem 3.7. Let A ∈ GLn(R) be expansive and Ψ ⊂ L2(Rn). For J0 ∈ N0 take Λ ⊃ Zn

to be a lattice in Rn satisfying:
(

∑

j∈Z
Bj

Λ
∗
)

∩ Zn ⊂ B−J0Λ
∗. (3.17)

Suppose that every ψ ∈ Ψ satisfies the support condition:

ψ̂(ξ)ψ̂(ξ + k) = 0 for all k ∈ Zn \BJ0Zn. (3.18)

Then, if A(Ψ) is a frame with bounds C1 and C2, so is A(d(A−J0Λ)1/2Ψ, A, A−J0Λ).

Proof. We will only sketch the proof since it is similar to that of Theorem 3.2. Again, the
key ingredient is to show the translational averaging formula (3.8). Since A(Ψ, A,Zn) is
a Bessel sequence, we can freely apply Proposition 3.4.

First observe that (3.17) implies that Λ
∗ = Λ

∗ ∩ Zn ⊂ B−J0Λ
∗. By taking duals, we

have Λ ⊃ AJ0Λ and thus Λ ⊂ A−J0Λ. Hence, it is meaningful to talk about the quotient
groups Aj−J0Λ/AjZn for j ∈ Z. Fix J ∈ N. Mimicking the proof of Lemma 3.1 we
can show that for all ε > 0, there exists K = KJ,ε which an ε-approximate transversal
constellation of Aj−J0Λ/AjZn for all |j| ≤ J .

Fix f ∈ D . As in the proof of Theorem 3.5 we consider I1(J) and I2(J) defined in
equation (3.9). As before we have I2(J) → 0 as J → ∞. Since cj,l(m) = 0 for all
m ∈ Zn \BJ0Zn by (3.18), we have that

I1(J) =

L
∑

l=1

∑

|j|≤J

∑

m∈(BJ0Zn)∩Zn

cj,l(m)
1

#|K|

∑

d∈K
e2πi〈B

jm,d〉
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As in the proof of Theorem 3.5 by Lemma 2.2 one can show that

I1(J) →
L
∑

l=1

∑

|j|≤J

∑

m∈(BJ0Λ∗)∩Zn

cj,l(m) =

L
∑

l=1

∑

|j|≤J

∑

m∈BJ0Λ∗

cj,l(m)

as ε → 0. The last step is a consequence of BJ0Λ
∗ ⊂ Λ

∗ ⊂ Zn. It follows that we can
find a sequence {DJ}J∈N of finite subsets of Rn such that

1

#|DJ |

∑

d∈DJ

N(Tdf,Z
n) →

L
∑

l=1

∑

j∈Z

∑

m∈BJ0Λ∗

cj,l(m) = N(f, A−J0Λ)

as J → ∞. The rest of proof goes along the lines of the proof of Theorem 3.2. �

Remark 3.8. Observe that (3.17) implies the following weaker condition

BJ0+jZn ∩ Λ
∗ ⊂ Bj

Λ
∗ for all j ∈ Z. (3.19)

Moreover, under the extra assumptions A ∈ Mn(Z) and BΛ
∗ ⊂ Λ

∗ one can show, by
replicating the proof of Proposition 3.6, that condition (3.17) is equivalent with

BJ0+1Zn ∩ Λ
∗ ⊂ BΛ

∗. (3.20)

Recall that under these assumptions condition (3.3) from Theorem 3.2 is equivalent to
BZn ∩ Λ

∗ ⊂ BΛ
∗ which is more restrictive on A and Λ than (3.20). Indeed, for n = 1

with A = a > 1 and Λ = Z/λ, where a, λ ∈ N, condition (3.3) is satisfied if and only if
a and λ are relative prime, while (3.20) and hence (3.17) are satisfied exactly when aλ
divides lcm(aJ0+1, λ). In particular, for any given a, λ ∈ N, we can always find a J0 ∈ N0

such that (3.17) is satisfied.

4. Oversampling of dual frames for real dilations

In this section we establish the analogues of Theorems 3.2 and 3.7 for dual affine
frames. We also give a counterexample to a result of Chui, Czaja, Maggioni, and Weiss
[15] on the oversampling of rationally dilated dual affine frames.

For Bessel affine systems A(Ψ, A, Γ) and A(Φ, A, Γ), we define, for each α ∈ Zn:

tΓα(ξ) =

L
∑

l=1

∑

j∈Z:B−jα∈Γ∗
ψ̂l(B

−jξ)φ̂l(B−j(ξ + α)).

It is well known that two Bessel families A(Ψ, A, Γ) and A(Φ, A, Γ) are dual frames if,
and only if, tΓα(ξ) = δα,0 for a.e. ξ and all α ∈ Zn. The proof of this result can be found
in [15, Theorem 4] and [24, Theorem 9.6].

4.1. The Second Oversampling Theorem for dual frames. Before we present the
main results of this section, we introduce yet another condition on the oversampling
lattice Λ ⊃ Zn:

BjZn ∩ Λ
∗ ⊂ Bj

Λ
∗ for all j ∈ Z. (4.1)

This new assumption on Λ is obviously weaker than (3.3). The following result can then
be seen as an analogue of Theorem 3.2 for dual affine frames.
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Theorem 4.1. Let A ∈ GLn(R) be expansive and Ψ,Φ ⊂ L2(Rn). Suppose that either
of the following assertions hold:

(i) The oversampling lattice Λ ⊃ Zn satisfies (4.1) and the oversampled affine systems
A(d(Λ)1/2Ψ, A,Λ) and A(d(Λ)1/2Φ, A,Λ) are Bessel sequences.

(ii) The oversampling lattice Λ ⊃ Zn satisfies (3.3)

Then, if A(Ψ) and A(Φ) are dual frames, so are A(d(Λ)1/2Ψ, A,Λ) and A(d(Λ)1/2Φ, A,Λ).

Proof. (i): By [15, Theorem 4] it suffices to prove that tΛα(ξ) = δα,0 for α ∈ Zn. From our
hypothesis we know that tZ

n

α (ξ) = δα,0. Fix α ∈ Zn. We first note that
{

j ∈ Z : B−jα ∈ Λ
∗} ⊂

{

j ∈ Z : B−jα ∈ Zn
}

, (4.2)

since Λ
∗ ⊂ Zn. Then, we claim that equality between the above sets holds when

{j ∈ Z : B−jα ∈ Λ
∗} is non-empty. To see this take j ∈ Z so that B−jα ∈ Zn. By

assumption there is a j0 ∈ Z such that B−j0α ∈ Λ
∗. Thus, by (4.1),

α ∈ BjZn ∩Bj0Λ
∗ = Bj0(Bj−j0Zn ∩ Λ

∗) ⊂ Bj0(Bj−j0Λ
∗) = Bj

Λ
∗,

that is, B−jα ∈ Λ
∗.

If {j ∈ Z : B−jα ∈ Λ
∗} = ∅ for some (nonzero) α ∈ Zn, then trivially tΛα(ξ) = 0. On

the other hand, if {j ∈ Z : B−jα ∈ Λ
∗} is non-empty, then tΛα(ξ) = tZ

n

α (ξ) = δα,0 by the
claim above. The conclusion is that tΛα(ξ) = δα,0 for α ∈ Zn.

(ii): By Theorem 3.2 the oversampled systems A(d(Λ)1/2Ψ, A,Λ) and A(d(Λ)1/2Φ, A,Λ)
are frames hence, in particular, Bessel sequences. The result now follows directly from
Theorem 4.1(i). �

As a direct consequence of the proof of Theorem 4.1(i) we have the following oversam-
pling result for Parseval (tight) frames.

Theorem 4.2. Let A ∈ GLn(R) be expansive and Ψ ⊂ L2(Rn). Take Λ ⊃ Zn to be a
lattice in Rn satisfying (4.1). If A(Ψ) is a Parseval frame, then so is A(d(Λ)1/2Ψ, A,Λ).

4.2. Related work. Laugesen [30, Theorem 8.3] has proved the Second Oversampling
Theorem for dual frames for integer (and expansive or amplifying) dilations A ∈Mn(Z)
under the assumption (3.11) and, as usual, Zn ⊂ Λ. Within the settings of expansive
dilations, Theorem 8.3 in [30] is therefore a special case of Theorem 4.1.

Chui, Czaja, Maggioni, and Weiss have three versions of the Second Oversampling
Theorem for dual frames [15, Proposition 1]. In our notation, their results can be sum-
marized as follows:

(i) The first result uses the assumptions [15, (4.1) & (4.2)] and that some power of B
preserves the lattices Zn and Λ

∗ (a priori need not be the same power), i.e., there
exist γ, γ′ ∈ N such that

BγZn ⊂ Zn, Zn ∩BjZn = {0} for 0 < j < γ, (4.3)

Bγ′

Λ
∗ ⊂ Λ

∗, Λ
∗ ∩ Bj

Λ
∗ = {0} for 0 < j < γ′, (4.4)

Λ
∗ \Bγ′

Λ
∗ ⊂ Zn \BγZn. (4.5)
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As we will see in Remark 4.3 below, the powers γ and γ′ must be actually equal,
and consequently our condition (4.1) will hold. In particular, the hypothesis [15,
(4.1)] is unnecessary.

(ii) The second statement is incorrect (see Example 3 below for a counterexample).
(iii) The third result uses the assumptions Λ

∗ ⊂ Zn and BjZn ∩ Zn = {0} for all j > 0.
This implies BjZn ∩ Zn = {0} for all j 6= 0 which implies our condition (4.1) since
Λ
∗ ⊂ Zn. We also note that the condition A ∈ E3(CB) in [15], i.e., Bj

Λ
∗∩Λ

∗ = {0}
for all j > 0, is implied by BjZn ∩ Zn = {0} for all j > 0. Hence, A ∈ E3(B) ∩
E3(CB) could be replaced by A ∈ E3(B) in [15, Proposition 1(iii)].

Consequently, the oversampling result in [15] is also a special case of Theorem 4.1. We
also remark that the necessary condition that the oversampled affine systems are Bessel
sequences is missing in all three statements in [15, Proposition 1]. This condition can
of course be left out if the second oversampling theorem for frames is available (e.g.,
as in Theorem 4.1(ii)) or if one is working with tight frames (e.g., as in Theorem 4.2).
However, in general we believe the following is an open problem.

Question 1. Let Ψ ⊂ L2(Rn) and A ∈ GLn(R) be expansive. Suppose that an affine
system A(Ψ) is a Bessel sequence and a lattice Λ ⊃ Zn. Is the oversampled affine system
A(d(Λ)1/2Ψ, A,Λ) necessarily a Bessel sequence?

Remark 4.3. Assume that a dilation B and a lattice Λ satisfy (4.3)–(4.5). By the Smith
normal form theorem, see [32, Theorem 3.7], there is a basis v1, . . . , vn of the lattice Λ∗ and
integers αi ∈ N (i = 1, . . . , n) satisfying 1 ≤ α1 ≤ · · · ≤ αn such that α1v1, . . . , αnvn is a
basis of the lattice Bγ′

Λ
∗. Since Bγ′

Λ
∗ is a proper sublattice of Λ∗ (B is expansive), not all

αi will be equal to one; in particular αn ≥ 2. Define w1 = v1 + vn, . . . , wn−1 = vn−1 + vn,
and wn = vn, i.e., considered as (coordinate) column vectors we define W = V P , where

W = [w1 · · ·wn], V = [v1 · · · vn], P =















1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
...

0 0 0
. . . 0

1 1 1 · · · 1















.

Note that Λ∗ = V Zn = V PZn = WZn since the matrix P is integer valued and detP = 1.
Therefore, {w1, . . . , wn} is also a basis of Λ∗, but with the property that wi /∈ Bγ′

Λ
∗ for

all i = 1, . . . , n.
Now, by (4.5), we have wi ∈ Zn, and thus Λ

∗ ⊂ Zn. Combining this with (4.3) and
(4.4) implies that γ′ ≥ γ. Using the fact that there exists m ∈ N such that mZn ⊂ Λ

∗,
which e.g., follows from formula (2.3) in [8] with m = d(Λ∗), we can also deduce that
γ ≥ γ′. Thus, conditions (4.3)–(4.5) imply that Bγ ∈Mn(Z), Λ

∗ ⊂ Zn, Bγ
Λ
∗ ⊂ Λ

∗, and

Λ
∗ \Bγ

Λ
∗ ⊂ Zn \BγZn.

By the equivalence (iv) ⇔ (v) in Proposition 3.6 applied for the dilation Bγ we deduce
that (4.1) holds for j ∈ γZ. If j 6∈ γZ, then BjZn ∩ Λ

∗ ⊂ BjZn ∩ Zn = {0}, and thus
(4.1) holds for all j ∈ Z.
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Example 3. We consider oversampling of dual frames in L2(R) with dilation parameter
A = 3/2. In this setting, Proposition 1(ii) from [15] states that if A(ψ, 3/2,Z) and
A(φ, 3/2,Z) are dual frames, so are A(2−1/2ψ, 3/2,Z/2) and A(2−1/2φ, 3/2,Z/2); hence,
in particular, if A(ψ, 3/2,Z) is a Parseval frame, then so is A(2−1/2ψ, 3/2,Z/2). We will
exhibit a generator ψ ∈ L2(R) contradicting this statement. Note that the conclusion
from our Theorem 4.1 is that oversampling lattices Λ = 1/λZ with λ ∈ {1, 5, 7, 11, . . .}
will guarantee preservation of tightness/duality, see Example 1. The definition of ψ is:

ψ̂(ξ) =



















1 ξ ∈ [4/3, 3/2) ,
1√
2

ξ ∈ [−1,−2/3) ∪ [1, 4/3) ∪ [3/2, 2] ,

− 1√
2

ξ ∈ [−3/2,−1) ,

0 otherwise,

see also Figure 1.

1

−1

1 2−1−2 ξ3
2

4
3

−3
2

−2
3

− 1√
2

1√
2

Figure 1. Graph of ψ̂.

We will first show that A(ψ, 3/2,Z) indeed is a Parseval frame. By [19, Corollary 2]
an affine system of the form A(λ−1/2ψ, 3/2, 1/λZ) is a Parseval frame if, and only if, for
a.e. ξ ∈ R,

∑

j∈Z

∣

∣

∣
ψ̂((3

2
)jξ)

∣

∣

∣

2

= 1 (4.6)

s
∑

j=0

ψ̂((3
2
)jξ)ψ̂((3

2
)j(ξ + 2sλt)) = 0 for s = 0, 1, . . . and t ∈ Z \ (2Z ∪ 3Z). (4.7)

It is easy to see, e.g., from Figure 1, that equation (4.6) is satisfied. Since

supp ψ̂((3
2
)j(·+ 2st)) ⊂ [−2, 2]− 2st for j ≥ 0, (4.8)

we have that
∣

∣

∣
supp ψ̂((3

2
)j ·) ∩ supp ψ̂((3

2
)j(·+ 2st))

∣

∣

∣
= 0 for |t| ≥ 5 and s ≥ 0.
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Therefore, we only need to verify (4.7) with λ = 1 for t = ±1. This is trivial when s = 0

since ψ̂ has disjoint support with both ψ̂(·+ 1) and ψ̂(· − 1). For t = ±1 we have

ψ̂(ξ)ψ̂(ξ − 2t) + ψ̂(3
2
ξ)ψ̂(3

2
(ξ − 2t)) = 1

2
1[t,1/3+t](ξ)−

1
2
1[t,1/3+t](ξ) = 0,

as seen from Figure 1 and 2. This shows (4.7) for s = 1. When s ≥ 2 the equations in
(4.7) are trivially satisfied by (4.8), which, in turn, proves that A(ψ, 3/2,Z) is a Parseval
frame.

1

−1

1 2 3−1−2−3 ξ

− 1√
2

1√
2

Figure 2. Graph of ψ̂(3
2
(ξ + 2)) (dashed), ψ̂(3

2
ξ) (solid), and ψ̂(3

2
(ξ − 2)) (dotted).

For λ = 2 equation (4.7) with s = 0 and t = ±1 becomes ψ̂(ξ)ψ̂(ξ ± 2) = 0 which is
clearly not satisfied (see Figure 1). Therefore A(2−1/2ψ, 3/2,Z/2) is not a Parseval frame
contradicting [15, Proposition 1(ii)]. On the other hand, we observe directly from the
characterizing equations (4.6) & (4.7) that A(λ−1/2ψ, 3/2, 1/λZ) actually is a Parseval
frame for any λ ≥ 4.

The proof of [15, Proposition 1(ii)] is based on higher dimensional analogous of the
characterizing equations (4.6) and (4.7). The mistake in the proof follows from the fact

that the parameter s is not only present in the ψ̂((3
2
)j(·+2st))-term, but also determines

the number of terms in the sum (4.7). Therefore one cannot replace only one instance of
s with s+ 1 as done in the proof without changing the conditions in a profound way.

4.3. Oversampling of dual frames with the support condition. The following
result is an analogue of Theorem 3.7 for dual affine frames using the weaker condition
(3.19) instead of (3.17).

Theorem 4.4. Let A ∈ GLn(R) be expansive and Ψ,Φ ⊂ L2(Rn). For J0 ∈ N0 take
Λ ⊃ Zn to be a lattice in Rn satisfying (3.19). Suppose that, for every l = 1, . . . , L,

ψ̂l(ξ)φ̂l(ξ + k) = 0 for all k ∈ Zn \BJ0Zn, (4.9)

and that A(d(Λ)1/2Ψ, A,Λ) and A(d(Λ)1/2Φ, A,Λ) are Bessel sequences. If A(Ψ) and
A(Φ) are dual frames, then so are A(d(Λ)1/2Ψ, A,Λ) and A(d(Λ)1/2Φ, A,Λ).

Proof. By [15, Theorem 4] it suffices to prove that

tΛα(ξ) =

L
∑

l=1

∑

j∈Z:B−jα∈Λ∗

ψ̂l(B
−jξ)φ̂l(B−j(ξ + α)) = δα,0
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for α ∈ Zn. From our hypothesis we have that tZ
n

α (ξ) = δα,0. Fix α ∈ Zn. We can
assume that {j ∈ Z : B−jα ∈ Λ

∗} is non-empty; otherwise, we have nothing to prove. In
this case, we claim that

{

j ∈ Z : B−jα ∈ Λ
∗} ⊃

{

j ∈ Z : B−jα ∈ BJ0Zn
}

.

To see this take j ∈ Z so that B−jα ∈ BJ0Zn. By the assumption on α, there is a j0 ∈ Z

such that B−j0α ∈ Λ
∗. Thus, by (3.19),

α ∈ BJ0+jZn ∩Bj0Λ
∗ = Bj0(BJ0+j−j0Zn ∩ Λ

∗) ⊂ Bj0(Bj−j0Λ
∗) = Bj

Λ
∗,

that is, B−jα ∈ Λ
∗.

In tZ
n

α (ξ) we sum over {j ∈ Z : B−jα ∈ Zn}, but since ψ̂l(B
−jξ)φ̂l(B

−j(ξ+α)) = 0 for
all B−jα ∈ Zn \BJ0Zn by (4.9), this can be replaced with

{

j ∈ Z : B−jα ∈ BJ0Zn
}

. In

other words, tZ
n

α (ξ) = tA
−jZn

α (ξ). Therefore, by (4.2) and the claim, we conclude that
tΛα(ξ) = δα,0. �

5. Tight oversampling and shift invariance gain

In the final section we restrict our attention to the setting of integer dilations. Our
goal is to provide a link between the improved shift invariance of the core space of an
orthogonal wavelet and dilation matrix oversampling, i.e., oversampling by special classes
of lattices of the form Λ = A−sZn, s ∈ N. These types of lattices are the antipodes of
admissible lattices for oversampling listed in Proposition 3.6. Thus, they might appear
as the worst choice of lattices for showing oversampling results.

In spite of this, we show that this class of lattices plays an important role in linking
oversampling with additional shift invariance of the core space. More precisely, the preser-
vation of tight frame property when oversampling by such lattices is actually equivalent
with the membership in Behera-Weber classes of wavelets [2, 33]. Other results about the
dilation matrix oversampling were obtained earlier in [9, 15]. By Remark 3.8, our results
on oversampling with the support condition, Theorems 3.7 and 4.4, are also applicable
for lattices Λ = A−sZn since both (3.17) and (3.19) hold with J0 = s.

Suppose that ψ ∈ L2(Rn) is a semi-orthogonal Parseval wavelet. This means that
A(ψ) = {ψj,k : j ∈ Z, k ∈ Zn} is a Parseval frame and

〈ψj,k, ψj′,k′〉 = 0 for all j 6= j′ ∈ Z, k, k′ ∈ Zn.

The space of negative dilates of ψ is defined by

V = V (ψ) = span{ψj,k : j < 0, k ∈ Zn}.

Following Behera [2] and Weber [33] we define the classes of wavelets with respect to
the extent of shift invariance of corresponding spaces of negative dilates.

Definition 5.1. We say that a semi-orthogonal Parseval wavelet ψ belongs to the class
Lr, r ∈ N∪ {0}, if V (Ψ) is A−rZn-SI. We say that ψ ∈ L∞ if V (Ψ) is invariant under all
translations Ty, y ∈ Rn.

By definition Behera-Weber classes are nested, i.e., Lr ⊂ Lr+1. However, it is much
less obvious that the above inclusions are proper, i.e., Lr 6= Lr+1 for all r = 0, 1, . . .. This
result is due to Behera [2, Theorem 3.4].
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Theorem 5.2. Suppose ψ ∈ L2(Rn) is a semi-orthogonal Parseval wavelet associated
with dilation A ∈Mn(Z). Then for any r ∈ N ∪ {∞}, the following are equivalent:

(i) ψ ∈ Lr,
(ii) W (ψ) = span{ψ0,k : k ∈ Zn} is A−rZn-SI,

(iii) |K ∩ (K + k)| = 0 for all k ∈ Zn \BrZn, where K = supp ψ̂,
(iv) The oversampled wavelet systems A(| detA|−s/2ψ,A,A−sZn) are Parseval frames

for each s = 1, . . . , r.

When r = ∞ we use the convention that A−rZn = Rn and BrZn = {0}. Thus, (ii)
reads that W (ψ) is invariant under all translations in Rn, which is easily seen to be
equivalent with ψ ∈ L∞, and thus ψ is an MSF semi-orthogonal Parseval wavelet, that
is |ψ̂| = 1K for some measurable set K ⊂ Rn.

Proof. The equivalence (i) ⇔ (ii) for orthogonal wavelets is shown in [2, Lemma 2.2].
The following argument extends this result to Parseval semi-orthogonal wavelets.

First, assume (ii). If W (ψ) is A−rZn-SI, then so are the spaces DAj(W (ψ)) for j ≥ 0.
Since ψ is a semi-orthogonal wavelet, we have

V (ψ) =
⊕

j<0

DAj (W (ψ)) =

(

⊕

j≥0

DAj(W (ψ))

)⊥
,

and thus (i) holds. Conversely, (i) and the identity W (ψ) = DA(V (ψ)) ⊖ V (ψ) imply
(ii).

The equivalence (ii) ⇔ (iii) for orthonormal wavelets can be found in [2, Theorem
2.5]. The following argument extends this result to Parseval semi-orthogonal wavelets as
a consequence of a more general lemma about shift-invariance gain for SI spaces, which
is motivated by the results from [1]. Indeed, (ii) ⇔ (iii) follows from Lemma 5.3 with
V = W (ψ) and Λ = A−rZn.

Lemma 5.3. Suppose V is a principal Zn-SI subspace generated by ϕ, and Zn ⊂ Λ.
Then, V is Λ-SI if and only if

|K ∩ (k +K)| = 0 for all k ∈ Zn \ Λ∗, where K = supp ϕ̂. (5.1)

Proof. The fact that V is a principal SI space with respect to shifts in Zn implies that

V = {f ∈ L2(Rn) : f̂(ξ) = m(ξ)ϕ̂(ξ) a.e. ξ, for some measurable Zn-periodic m},

see [3] or [4]. If V is also Λ-SI, then we also have

V = {f ∈ L2(Rn) : f̂(ξ) = m̃(ξ)ϕ̂(ξ) a.e. ξ, for some measurable Λ
∗-periodic m̃}.

Let S =
⋃

γ∈Λ∗([0, 1]n + γ) and K = supp ϕ̂. Since m̃ = 1S is Λ
∗-periodic, there exists

Zn-periodic m such that

m̃(ξ)ϕ̂(ξ) = m(ξ)ϕ̂(ξ) for a.e. ξ.

This implies that m(ξ) = 1 for a.e. ξ ∈ K ∩ S. Thus, for a fixed k0 ∈ Zn \ Λ∗, we have
m̃(ξ − k0) = 0 and m(ξ − k0) = 1 for a.e. ξ ∈ K ∩ S. Thus, we must have ϕ̂(ξ − k0) = 0
for such ξ, which shows that |K ∩ (k0 +K)∩S| = 0. Replacing S by its translate k+S,
shows that |K ∩ (K + k0) ∩ (k + S)| = 0 for all k ∈ Zn, and thus (5.1) holds.
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Conversely, assume (5.1). Let D ∋ 0 be the set of representatives of distinct cosets
of Zn/Λ∗. Suppose that f ∈ L2(Rn) belongs to the Λ-SI space generated by ϕ, i.e.,

f̂(ξ) = m̃(ξ)ϕ̂(ξ) a.e. for some measurable Λ
∗-periodic function m̃. Define Zn-periodic

function

m(ξ) =
∑

d∈D
m̃(ξ + d)1K̃(ξ + d), where K̃ =

⋃

γ∈Λ∗

(K + γ).

Our assumption (5.1) implies that |(K̃ − d) ∩K| = 0 for d ∈ D \ {0}, and hence

m(ξ)ϕ̂(ξ) =
∑

d∈D
m̃(ξ + d)1K̃(ξ + d)ϕ̂(ξ) = m̃(ξ)ϕ̂(ξ) for a.e. ξ.

This shows that Λ-SI space generated by ϕ actually coincides with V . This completes
the proof of Lemma 5.3. �

Finally, the equivalence (iii) ⇔ (iv) can be deduced from wavelet characterizing equa-
tions for integer dilations [5, 12] as in the work of Catalán [13] and Chui and Sun [21, 22].
Indeed, the fact that both A(ψ,A,Zn) and A(| detA|−s/2ψ,A,A−sZn), s ∈ N, are Par-
seval frames implies that

s−1
∑

j=0

ψ̂(Bjξ)ψ̂(Bj(ξ + q)) = 0 for a.e. ξ and for q ∈ Zn \BZn. (5.2)

In particular, (5.2) with s = 1 implies that |K ∩ (q +K)| = 0 for q ∈ Zn \ BZn. Then,
by induction (5.2) implies that |K ∩ (Bs−1q+K)| = 0 for q ∈ Zn \BZn and s = 1, . . . , r.
Since,

⋃r
s=1B

s−1(Zn \ BZn) = Zn \ BrZn, we have (iii). Conversely, (iii) implies that
formula (5.2) holds for s = 1, . . . , r. Thus, by [22, Theorem 2.1] the affine systems
A(| detA|−s/2ψ,A,A−sZn), s = 1, . . . , r, are Parseval frames, which is the assertion (iv).
This completes the proof of Theorem 5.2. �
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