10,908 research outputs found
Instantaneous and Definite Time Overcurrent Protection Algorithms
The paper is focused on the instantaneous and definite time overcurrent protection algorithms. Overcurrent protection is one of the most used type of protection function. Algorithms are proposed according to IEC 60255-151. Prediciton algorithm, which will be used for instantaneous overcurrent protection, is proposed for determination of the peak value of the signal
Analysis and hardware testing of cell capacitor discharge currents during DC faults in half-bridge modular multilevel converters
This paper focuses on the behaviour of the cell capacitor discharge currents during DC faults in half-bridge modular multilevel converters. Active switches, not designed for fault conditions, are tripped to minimize discharge currents effect on the semiconductor switches. Two levels of device protection are commonly in place; driver level protection monitoring collector-emitter voltage and overcurrent protection with feedback measurement and control. However, unavoidable tripping delay times, arising from factors such as sensor lags, controller sampling delays and hardware propagation delays, impact transient current shape and hence affect the selection of semiconductor device ratings as well as arm inductance. Analytical expressions are obtained for current slew rate, peak transient current and resultant I2t for the cell capacitor discharge current taking into account such delays. The study is backed by experimental testing on discharge of a 900V MMC capacitor
Optimizing the roles of unit and non-unit protection methods within DC microgrids
The characteristic behavior of physically compact, multiterminal dc networks under electrical fault conditions can produce demanding protection requirements. This represents a significant barrier to more widespread adoption of dc power distribution for microgrid applications. Protection schemes have been proposed within literature for such networks based around the use of non-unit protection methods. This paper shows however that there are severe limitations to the effectiveness of such schemes when employed for more complex microgrid network architectures. Even current differential schemes, which offer a more effective, though costly, protection solution, must be carefully designed to meet the design requirements resulting from the unique fault characteristics of dc microgrids. This paper presents a detailed analysis of dc microgrid behavior under fault conditions, illustrating the challenging protection requirements and demonstrating the shortcomings of non-unit approaches for these applications. Whilst the performance requirements for the effective operation of differential schemes in dc microgrids are shown to be stringent, the authors show how these may be met using COTS technologies. The culmination of this work is the proposal of a flexible protection scheme design framework for dc microgrid applications which enables the required levels of fault discrimination to be achieved whilst minimizing the associated installation costs
Determination of protection system requirements for DC UAV electrical power networks for enhanced capability and survivability
A growing number of designs of future Unmanned Aerial Vehicle (UAV) applications utilise dc for the primary power distribution method. Such systems typically employ large numbers of power electronic converters as interfaces for novel loads and generators. The characteristic behaviour of these systems under electrical fault conditions, and in particular their natural response, can produce particularly demanding protection requirements. Whilst a number of protection methods for multi-terminal dc networks have been proposed in literature, these are not universally applicable and will not meet the specific protection challenges associated with the aerospace domain. Through extensive analysis, this paper seeks to determine the operating requirements of protection systems for compact dc networks proposed for future UAV applications, with particular emphasis on dealing with the issues of capacitive discharge in these compact networks. The capability of existing multi-terminal dc network protection methods and technologies are then assessed against these criteria in order to determine their suitability for UAV applications. Recommendations for best protection practice are then proposed and key inhibiting research challenges are discussed
Overcurrent Protection for Gyrotrons in EAST ECRH System
In this paper, an overcurrent protection system is designed to ensure the
safety of the gyrotrons in the EAST ECRH system. Two overcurrent protection
systems were established, a fast one and a slow one. The fast one uses the
current transformers as the current sensors. The models of the current
transformers and the superconducting magnet were built to analyze the effect of
the environmental magnetic field on the current transformers using FI method.
The analysis results show that the magnetic induction at the position near the
current transformers must less than 0.002 T, i.e., the current transformers
should be placed at a distance greater than 2.2 meters from the magnet center
to ensure its normal work. The slow one uses the shunt to monitor the currents.
An anti-fuse FPGA and a timer is used to realize the signal processing in the
fast protection circuit and the slow protection circuit respectively. The
response time of the fast protection circuit is less than 100 ns, and the
response time of the slow protection circuit is less than 31 {\mu}s.Comment: 8 pages, 11 figure
Inverter-converter automatic paralleling and protection
Electric control and protection circuits for parallel operation of inverter-converte
An adaptive overcurrent protection scheme for distribution networks
Distribution networks are evolving toward the vision of smart grids, with increasing penetration of distributed generation (DG), introduction of active network management (ANM), and potentially islanded modes of operation. These changes affect fault levels and fault current paths and have been demonstrated to compromise the correct operation of the overcurrent protection system. This paper presents an adaptive overcurrent protection system which automatically amends the protection settings of all overcurrent relays in response to the impact of DG, ANM, and islanding operation. The scheme has been developed using commercially available protection devices, employs IEC61850-based communications, and has been demonstrated and tested using a hardware-in-the-loop laboratory facility. A systematic comparison of the performance of the proposed adaptive scheme alongside that of a conventional overcurrent scheme is presented. This comparison quantifies the decrease in false operations and the reduction of mean operating time that the adaptive system offers
Reliability analysis of distribution systems with photovoltaic generation using a power flow simulator and a parallel Monte Carlo approach
This paper presents a Monte Carlo approach for reliability assessment of distribution systems with distributed generation using parallel computing. The calculations are carried out with a royalty-free power flow simulator, OpenDSS (Open Distribution System Simulator). The procedure has been implemented in an environment in which OpenDSS is driven from MATLAB. The test system is an overhead distribution system represented by means of a three-phase model that includes protective devices. The paper details the implemented procedure, which can be applied to systems with or without distributed generation, includes an illustrative case study and summarizes the results derived from the analysis of the test system during one year. The goal is to evaluate the test system performance considering different scenarios with different level of system automation and reconfiguration, and assess the impact that distributed photovoltaic generation can have on that performance. Several reliability indices, including those related to the impact of distributed generation, are obtained for every scenario.Postprint (published version
Impact of marine power system architectures on IFEP vessel availability and survivability
In recent years integrated full electric propulsion (IFEP) has become a popular power system concept within the marine community, both for the naval and the commercial community. In this paper the authors discuss the need for a detailed investigation into the impact of different IFEP power system architectures on the availability of power and hence on the survivability of the vessel. The power system architectures considered here could relate to either a commercial or a naval vessel and include radial, ring and hybrid AC/DC arrangements. Comparative fault studies of the architectures were carried out in an attempt to make valuable observations on the survivability of a vessel. Simulation results demonstrate that the ring and hybrid AC/DC architectural contribute to a higher survivability than the radial architecture. However, there are still challenges that need to be addressed and therefore potential solutions such as fault current limiters will be considered
- …
