269 research outputs found

    Frequency modulation of large oscillatory neural networks

    Get PDF
    Dynamical systems which generate periodic signals are of interest as models of biological central pattern generators and in a number of robotic applications. A basic functionality that is required in both biological modelling and robotics is frequency modulation. This leads to the question of whether there are generic mechanisms to control the frequency of neural oscillators. Here we describe why this objective is of a different nature, and more difficult to achieve, than modulating other oscillation characteristics (like amplitude, offset, signal shape). We propose a generic way to solve this task which makes use of a simple linear controller. It rests on the insight that there is a bidirectional dependency between the frequency of an oscillation and geometric properties of the neural oscillator's phase portrait. By controlling the geometry of the neural state orbits, it is possible to control the frequency on the condition that the state space can be shaped such that it can be pushed easily to any frequency

    Reduced Phase Models of Oscillatory Neural Networks

    Get PDF

    Design of Oscillatory Neural Networks by Machine Learning

    Full text link
    We demonstrate the utility of machine learning algorithms for the design of Oscillatory Neural Networks (ONNs). After constructing a circuit model of the oscillators in a machine-learning-enabled simulator and performing Backpropagation through time (BPTT) for determining the coupling resistances between the ring oscillators, we show the design of associative memories and multi-layered ONN classifiers. The machine-learning-designed ONNs show superior performance compared to other design methods (such as Hebbian learning) and they also enable significant simplifications in the circuit topology. We demonstrate the design of multi-layered ONNs that show superior performance compared to single-layer ones. We argue Machine learning can unlock the true computing potential of ONNs hardware

    Equilibrium Propagation and (Memristor-based) Oscillatory Neural Networks

    Get PDF
    Weakly Connected Oscillatory Networks (WCONs) are bio-inspired models which exhibit associative memory properties and can be exploited for information processing. It has been shown that the nonlinear dynamics of WCONs can be reduced to equations for the phase variable if oscillators admit stable limit cycles with nearly identical periods. Moreover, if connections are symmetric, the phase deviation equation admits a gradient formulation establishing a one-to-one correspondence between phase equilibria, limit cycle of the WCON and minima of the system’s potential function. The overall objective of this work is to provide a simulated WCON based on memristive connections and Van der Pol oscillators that exploits the device mem-conductance programmability to implement a novel local supervised learning algorithm for gradient models: Equilibrium Propagation (EP). Simulations of the phase dynamics of the WCON system trained with EP show that the retrieval accuracy of the proposed novel design outperforms the current state-of-the-art performance obtained with the Hebbian learning

    A Model of an Oscillatory Neural Network with Multilevel Neurons for Pattern Recognition and Computing

    Full text link
    The current study uses a novel method of multilevel neurons and high order synchronization effects described by a family of special metrics, for pattern recognition in an oscillatory neural network (ONN). The output oscillator (neuron) of the network has multilevel variations in its synchronization value with the reference oscillator, and allows classification of an input pattern into a set of classes. The ONN model is implemented on thermally-coupled vanadium dioxide oscillators. The ONN is trained by the simulated annealing algorithm for selection of the network parameters. The results demonstrate that ONN is capable of classifying 512 visual patterns (as a cell array 3 * 3, distributed by symmetry into 102 classes) into a set of classes with a maximum number of elements up to fourteen. The classification capability of the network depends on the interior noise level and synchronization effectiveness parameter. The model allows for designing multilevel output cascades of neural networks with high net data throughput. The presented method can be applied in ONNs with various coupling mechanisms and oscillator topology.Comment: 26 pages, 24 figure
    • …
    corecore