5,514 research outputs found

    Limited-Feedback-Based Channel-Aware Power Allocation for Linear Distributed Estimation

    Full text link
    This paper investigates the problem of distributed best linear unbiased estimation (BLUE) of a random parameter at the fusion center (FC) of a wireless sensor network (WSN). In particular, the application of limited-feedback strategies for the optimal power allocation in distributed estimation is studied. In order to find the BLUE estimator of the unknown parameter, the FC combines spatially distributed, linearly processed, noisy observations of local sensors received through orthogonal channels corrupted by fading and additive Gaussian noise. Most optimal power-allocation schemes proposed in the literature require the feedback of the exact instantaneous channel state information from the FC to local sensors. This paper proposes a limited-feedback strategy in which the FC designs an optimal codebook containing the optimal power-allocation vectors, in an iterative offline process, based on the generalized Lloyd algorithm with modified distortion functions. Upon observing a realization of the channel vector, the FC finds the closest codeword to its corresponding optimal power-allocation vector and broadcasts the index of the codeword. Each sensor will then transmit its analog observations using its optimal quantized amplification gain. This approach eliminates the requirement for infinite-rate digital feedback links and is scalable, especially in large WSNs.Comment: 5 Pages, 3 Figures, 1 Algorithm, Forty Seventh Annual Asilomar Conference on Signals, Systems, and Computers (ASILOMAR 2013

    On Optimal Power Allocation for Gaussian Broadcast Channel

    Get PDF
    We derive the optimal power allocation for Gaussian two users broadcast channel. To find the optimal power allocation between the two users, two optimization schemes are considered. In each optimization scheme, an analytical expression for the optimal power allocation between the two users is derived. The first optimization criterion finds the optimal power allocation between the two users such that they have equal rates. Then, the optimal power allocation that maximizes the sum rate capacity is studied. In addition, numerical examples are provided to verify the optimality of the derived schemes. Keywords: Gaussian Broadcast Channel, Capacity Region, Optimization

    Optimal Power Allocation over Multiple Identical Gilbert-Elliott Channels

    Full text link
    We study the fundamental problem of power allocation over multiple Gilbert-Elliott communication channels. In a communication system with time varying channel qualities, it is important to allocate the limited transmission power to channels that will be in good state. However, it is very challenging to do so because channel states are usually unknown when the power allocation decision is made. In this paper, we derive an optimal power allocation policy that can maximize the expected discounted number of bits transmitted over an infinite time span by allocating the transmission power only to those channels that are believed to be good in the coming time slot. We use the concept belief to represent the probability that a channel will be good and derive an optimal power allocation policy that establishes a mapping from the channel belief to an allocation decision. Specifically, we first model this problem as a partially observable Markov decision processes (POMDP), and analytically investigate the structure of the optimal policy. Then a simple threshold-based policy is derived for a three-channel communication system. By formulating and solving a linear programming formulation of this power allocation problem, we further verified the derived structure of the optimal policy.Comment: 10 pages, 7 figure

    Green communication via Type-I ARQ: Finite block-length analysis

    Get PDF
    This paper studies the effect of optimal power allocation on the performance of communication systems utilizing automatic repeat request (ARQ). Considering Type-I ARQ, the problem is cast as the minimization of the outage probability subject to an average power constraint. The analysis is based on some recent results on the achievable rates of finite-length codes and we investigate the effect of codewords length on the performance of ARQ-based systems. We show that the performance of ARQ protocols is (almost) insensitive to the length of the codewords, for codewords of length ≥50\ge 50 channel uses. Also, optimal power allocation improves the power efficiency of the ARQ-based systems substantially. For instance, consider a Rayleigh fading channel, codewords of rate 1 nats-per-channel-use and outage probability 10−3.10^{-3}. Then, with a maximum of 2 and 3 transmissions, the implementation of power-adaptive ARQ reduces the average power, compared to the open-loop communication setup, by 17 and 23 dB, respectively, a result which is (almost) independent of the codewords length. Also, optimal power allocation increases the diversity gain of the ARQ protocols considerably.Comment: Accepted for publication in GLOBECOM 201
    • …
    corecore