18,514 research outputs found
Opto-PCB: Three demonstrators for optical interconnections
We report on a research project targeting optical waveguide integrated PCBs conducted within the European FP6
Network of Excellence on Micro-Optics NEMO. For three identified feature requests we have built three specific demonstrators
respectively addressing the integration of active components, the fabrication of peripheral fibre ribbons and the integration of
multiple layers of waveguides on the board
Packaging technology enabling flexible optical interconnections
This paper reports on the latest trends and results on the integration of optical and opto-electronic devices and interconnections inside flexible carrier materials. Electrical circuits on flexible substrates are a very fast growing segment in electronics, but opto-electronics and optics should be able to follow these upcoming trends. This paper presents the back-thinning and packaging of single opto-electronic devices resulting in highly flexible and reliable packages. Optical waveguides and optical out-of-plane coupling structures are integrated inside the same layer stack, resulting in complete VCSEL-to-PD links with low total optical losses and high resistance to heat cycling and moisture exposure
Stabilization of Polymeric Nanofibers Layers for Use as Real-Time and In-Flow Photonic Sensors
In order to increase the sensitivity of a sensor, the relationship between its volume and the surface available to be functionalized is of great importance. Accordingly, porous materials are becoming very relevant, because they have a notable surface-to-volume ratio. Moreover, they offer the possibility to infiltrate the target substances on them. Among other porous structures, polymeric nanofibers (NFs) layers fabricated by electrospinning have emerged as a very promising alternative to low-cost and easy-to-produce high-performance photonic sensors. However, experimental results show a spectrum drift when performing sensing measurements in real-time. That drift is responsible for a significant error when trying to determine the refractive index variation for a target solution, and, because of that, for the detection of the presence of certain analytes. In order to avoid that problem, different chemical and thermal treatments were studied. The best results were obtained for thermal steps at 190 °C during times between 3 and 5 h. As a result, spectrum drifts lower than 5 pm/min and sensitivities of 518 nm/refractive index unit (RIU) in the visible range of the spectrum were achieved in different electrospun NFs sensors.This work was supported by the Spanish government through the project TEC2015-63838-C3-1-ROPTONANOSENS and from the Basque government through the project KK-2019/00101 -µ4INDUSTR
Fiber-optic projected-fringe digital interferometry
A phase-stepped projected-fringe interferometer was developed which uses a closed-loop fiber-optic phase-control system to make very accurate surface profile measurements. The closed-loop phase-control system greatly reduces phase-stepping error, which is frequently the dominant source of error in digital interferometers. Two beams emitted from a fiber-optic coupler are combined to form an interference fringe pattern on a diffusely reflecting object. Reflections off of the fibers' output faces are used to create a phase-indicating signal for the closed-loop optical phase controller. The controller steps the phase difference between the two beams by pi/2 radians in order to determine the object's surface profile using a solid-state camera and a computer. The system combines the ease of alignment and automated data reduction of phase-stepping projected-fringe interferometry with the greatly improved phase-stepping accuracy of our closed-loop phase-controller. The system is demonstrated by measuring the profile of a plate containing several convex surfaces whose heights range from 15 to 25 micron high
Dynamic metasurface lens based on MEMS Technology
In the recent years, metasurfaces, being flat and lightweight, have been
designed to replace bulky optical components with various functions. We
demonstrate a monolithic Micro-Electro-Mechanical System (MEMS) integrated with
a metasurface-based flat lens that focuses light in the mid-infrared spectrum.
A two-dimensional scanning MEMS platform controls the angle of the lens along
the two orthogonal axes (tip-tilt) by +-9 degrees, thus enabling dynamic beam
steering. The device can compensate for off-axis incident light and thus
correct for aberrations such as coma. We show that for low angular
displacements, the integrated lens-on-MEMS system does not affect the
mechanical performance of the MEMS actuators and preserves the focused beam
profile as well as the measured full width at half maximum. We envision a new
class of flat optical devices with active control provided by the combination
of metasurfaces and MEMS for a wide range of applications, such as miniaturized
MEMS-based microscope systems, LIDAR scanners, and projection systems
A survey of fractured SrTiO surfaces: from the micro-meter to nano-meter scale
Cross-sectional scanning tunneling microscopy was utilized to study fractured
perovskie oxide surfaces. It was found for the non-cleavable perovskite oxide,
SrTiO, that atomically flat terraces could be routinely created with a
controlled fracturing procedure. Optical and scanning electron microscopy as
well as a profilometer were used to obtain the information from sub-millimeter
to sub-micrometer scales of the fractured surface topography.Comment: 9 pages, 4 figure
Topological characterization of antireflective and hydrophobic rough surfaces: are random process theory and fractal modeling applicable?
The random process theory (RPT) has been widely applied to predict the joint
probability distribution functions (PDFs) of asperity heights and curvatures of
rough surfaces. A check of the predictions of RPT against the actual statistics
of numerically generated random fractal surfaces and of real rough surfaces has
been only partially undertaken. The present experimental and numerical study
provides a deep critical comparison on this matter, providing some insight into
the capabilities and limitations in applying RPT and fractal modeling to
antireflective and hydrophobic rough surfaces, two important types of textured
surfaces. A multi-resolution experimental campaign by using a confocal
profilometer with different lenses is carried out and a comprehensive software
for the statistical description of rough surfaces is developed. It is found
that the topology of the analyzed textured surfaces cannot be fully described
according to RPT and fractal modeling. The following complexities emerge: (i)
the presence of cut-offs or bi-fractality in the power-law power-spectral
density (PSD) functions; (ii) a more pronounced shift of the PSD by changing
resolution as compared to what expected from fractal modeling; (iii) inaccuracy
of the RPT in describing the joint PDFs of asperity heights and curvatures of
textured surfaces; (iv) lack of resolution-invariance of joint PDFs of textured
surfaces in case of special surface treatments, not accounted by fractal
modeling.Comment: 21 pages, 13 figure
Selective detection of bacterial layers with terahertz plasmonic antennas
Current detection and identification of micro-organisms is based on either
rather unspecific rapid microscopy or on more accurate complex, time-consuming
procedures. In a medical context, the determination of the bacteria Gram type
is of significant interest. The diagnostic of microbial infection often
requires the identification of the microbiological agent responsible for the
infection, or at least the identification of its family (Gram type), in a
matter of minutes. In this work, we propose to use terahertz frequency range
antennas for the enhanced selective detection of bacteria types. Several
microorganisms are investigated by terahertz time-domain spectroscopy: a fast,
contactless and damage-free investigation method to gain information on the
presence and the nature of the microorganisms. We demonstrate that plasmonic
antennas enhance the detection sensitivity for bacterial layers and allow the
selective recognition of the Gram type of the bacteria
Evaluating the performance of TiN coating on a PM HSS milling cutter used in manufacturing of bandsaws
- …
