826 research outputs found

    Application of Ferrite Nanomaterial in RF On-Chip Inductors

    Get PDF
    Several kinds of ferrite-integrated on-chip inductors are presented. Ferrite nanomaterial applied in RF on-chip inductors is prepared and analyzed to show the properties of high permeability, high ferromagnetic resonance frequency, high resistivity, and low loss, which has the potential that will improve the performance of RF on-chip inductors. Simulations of different coil and ferrite nanomaterial parameters, inductor structures, and surrounding structures are also conducted to achieve the trend of gains of inductance and quality factor of on-chip inductors. By integrating the prepared ferrite magnetic nanomaterial to the on-chip inductors with different structures, the measurement performances show an obvious improvement even in GHz frequency range. In addition, the studies of CMOS compatible process to integrate the nanomaterial promote the widespread application of magnetic nanomaterial in RF on-chip inductors

    Design and Fabrication of On-Chip Inductors

    Get PDF
    An inductor is a conductor arranged in an appropriate shape (such as a conducting wire wound as a coil) to supply a certain amount of self-inductance. This passive device stores magnetic energy. Simple spiral planar inductors of varying geometry were designed and fabricated on a silicon substrate insolated by silicon oxide. The process chosen for fabrication of the devices was the copper damascene process. Line widths and spaces varied from 5μm to 20μm. Thickness of the copper wire was approximately 1.5 μm. The inductors were isolated from the silicon substrate by 0.5 μm of Si02 and wires were insolated with the same material. Theoretical inductance values for the designed inductors ranged from 17nH to 300nH

    The BLIXER, a Wideband Balun-LNA-I/Q-Mixer Topology

    Get PDF
    This paper proposes to merge an I/Q current-commutating mixer with a noise-canceling balun-LNA. To realize a high bandwidth, the real part of the impedance of all RF nodes is kept low, and the voltage gain is not created at RF but in baseband where capacitive loading is no problem. Thus a high RF bandwidth is achieved without using inductors for bandwidth extension. By using an I/Q mixer with 25% duty-cycle LO waveform the output IF currents have also 25% duty-cycle, causing 2 times smaller DC-voltage drop after IF filtering. This allows for a 2 times increase in the impedance level of the IF filter, rendering more voltage gain for the same supply headroom. The implemented balun-LNA-I/Q-mixer topology achieves > 18 dB conversion gain, a flat noise figure < 5.5 dB from 500 MHz to 7 GHz, IIP2 = +20 dBm and IIP3 = -3 dBm. The core circuit consumes only 16 mW from a 1.2 V supply voltage and occupies less than 0.01 mm2 in 65 nm CMOS

    A CMOS Q-Enhancement Bandpass-Filter For Use In Paging Receivers

    Get PDF
    Paging receivers often have to work in a dense\ud signal environment. This poses high demands on the preselection\ud filter. One of the most difficult aspects is the large\ud image rejection demand, which only can be satisfied by use\ud of a narrow-band or high-Q filter. The practical restrictions\ud for possible filter implementations are the low cost, low\ud power and the small size of the pager. By use of positive feedback\ud around a cheap off-chip low-Q inductor we obtain an\ud enhanced quality factor. We are therefore able to construct\ud selective filters using cheap small-size inductors. The price\ud paid for Q-enhancement is a larger noise and higher sensitivity\ud to component variations. The higher noise influence\ud is eliminated using a high gain in the preceding LNA-stage,\ud which is considered a part of the filter. Simulated results\ud are: Q enhanced from 30 to 100, Image-rejection = 48dB,\ud f0 = 280MHz, Voltage-gain = 20dB, Noise- figure = 2.4dB,\ud IMFDR = 66dB, IDD = 1mA, VDD = 2V. The original contribution\ud of this work is the application of the enhancement\ud principle to off-chip components, which benefits the minimization\ud of size and cost

    Green on-chip inductors in three-dimensional integrated circuits

    Get PDF
    This thesis focuses on the technique for the improvement of quality factor and inductance of the TSV inductors and then on the utilization of TSV inductors in various on-chip applications such as DC-DC converter and resonant clocking. Through-silicon-vias (TSVs) are the enabling technique for three-dimensional integrated circuits (3D ICs). However, their large area significantly reduces the benefits that can be obtained by 3D ICs. On the other hand, a major limiting factor for the implementation of many on-chip circuits such as DC-DC converters and resonant clocking is the large area overhead induced by spiral inductors. Several works have been proposed in the literature to make inductors out of idle TSVs. In this thesis, the technique to improve the quality factor and inductance is proposed and then discusses about two applications utilizing TSV inductors i.e., inductive DC-DC converters and LC resonant clocking. The TSV inductor performs inferior to spiral inductors due to its increases losses. Hence to improve the performance of the TSV inductor, the losses should be reduced. Inductive DC-DC converters become prominent for on-chip voltage conversion because of their high efficiency compared with other types of converters (e.g. linear and capacitive converters). On the other hand, to reduce on-chip power, LC resonant clocking has become an attractive option due to its same amplitude and phases compared to other resonant clocking methods such as standing wave and rotary wave. A major challenge for both applications is associated with the required inductor area. In this thesis, the effectiveness of such TSV inductors in addressing both challenges are demonstrated --Abstract, page iv

    Three-dimensional micromachined on-chip inductors for high frequency applications

    Get PDF
    Demands for wireless communication are ever-escalating for consumer and military communication applications. The requirements of portability, more functionality and lower cost have been driving forces toward smaller, more sophisticated and flexible wireless devices with lower power consumption. To meet these requirements, monolithically integrated passive inductors with high Q-factors and high self-resonant frequencies are desirable. Q-factor and self-resonant frequency of an inductor are significantly degraded at high frequencies due to conductor ohmic loss, magnetically induced eddy current in the conductive substrate, and lower self-resonant frequency from capacitance between conductive substrate and conductors. In this dissertation, novel three-dimensional arch-like solenoid and dome-shaped spiral inductors are designed, fabricated, and characterized. MEMS-based fabrication techniques such as copper electroplating through voids in thick SU-8 photoresist molds and EAGLE2100 conformal photoresist molds on sacrificial arch-like or dome-shape SJR5740 photoresist mounds are utilized. An air gap between the inductor and the silicon substrate is used to reduce the degradations of inductor performance. According to the Sonnet electromagnetic simulations, 30 μm air-gap suspension over the substrate is an adequate choice for these inductors. Suspended arch-like solenoid copper inductor has flat bottom conductor connected to arch-like top conductor with an air core in between. This design has only 2 contact points per inductor turn to minimize series resistance. Suspended domeshaped spiral copper inductor is fabricated on a sacrificial photoresist dome with the outer end connected to one probe pad, and the inner end connected to the other probe pad through vias and an air-bridge. The sidewalls of spiral turns in this design overlap less with each other thereby reducing inter-turn capacitances. Fabricated inductors are characterized and modeled at high frequencies from Sparameter measurements. ABCD-parameters, derived from the S-parameters are translated into a simplified physical π-model. The resulting arch-like suspended inductors with 2-5 turns have inductances between 0.62 to 0.79 nH, peak Q-factor values between 15.42 to 17 at peak-Q frequencies between 4.7 GHz to 7.0 GHz, and self-resonant frequencies between 47.6 GHz to 88.6 GHz. The 3-turn dome-shaped spiral inductor has inductance of 3.37 nH, peak Q-factor of 35.9 at 1.65 GHz, and self-resonant frequency at 18.74 GHz

    Laser-Based Fabrication of Microstructures on Nickel Thin Films and Its Applications in On-Chip Thin Film Inductors

    Full text link
    This work reports on the fabrication of microbump structures on Ni films by single-pulse, localized laser irradiation. Conditions for the reproducible formation of such microstructures have been identified in terms of laser-irradiation and film parameters after systematic studies involving a relevant parameter space. The cracks and voids morphology of the sputtered films was rendered undesirable and hence, smoother Ni thin film of same thickness (200nm) were deposited by vacuum evaporation. The continuous nature of the film resulted in radially symmetric thermal expansion and deformation, thus achieving a high yield of microstructures. An improvement in the inductance and the quality factor of on-chip spiral inductors incorporating such laser-microstructured ferromagnetic nickel thin films was observed, which demonstrates the potential of such a laser-based method for fabrication or fine tuning of various micro-/nanoelectric/electronic sensor and other components and systems.Comment: 15 pages, 10 figure

    Design of Wireless Power Transfer and Data Telemetry System for Biomedical Applications

    Get PDF
    With the advancement of biomedical instrumentation technologies sensor based remote healthcare monitoring system is gaining more attention day by day. In this system wearable and implantable sensors are placed outside or inside of the human body. Certain sensors are needed to be placed inside the human body to acquire the information on the vital physiological phenomena such as glucose, lactate, pH, oxygen, etc. These implantable sensors have associated circuits for sensor signal processing and data transmission. Powering the circuit is always a crucial design issue. Batteries cannot be used in implantable sensors which can come in contact with the blood resulting in serious health risks. An alternate approach is to supply power wirelessly for tether-less and battery- less operation of the circuits.Inductive power transfer is the most common method of wireless power transfer to the implantable sensors. For good inductive coupling, the inductors should have high inductance and high quality factor. But the physical dimensions of the implanted inductors cannot be large due to a number of biomedical constraints. Therefore, there is a need for small sized and high inductance, high quality factor inductors for implantable sensor applications. In this work, design of a multi-spiral solenoidal printed circuit board (PCB) inductor for biomedical application is presented. The targeted frequency for power transfer is 13.56 MHz which is within the license-free industrial, scientific and medical (ISM) band. A figure of merit based optimization technique has been utilized to optimize the PCB inductors. Similar principal is applied to design on-chip inductor which could be a potential solution for further miniaturization of the implantable system. For layered human tissue the optimum frequency of power transfer is 1 GHz for smaller coil size. For this reason, design and optimization of multi-spiral solenoidal integrated inductors for 1 GHz frequency is proposed. Finally, it is demonstrated that the proposed inductors exhibit a better overall performance in comparison with the conventional inductors for biomedical applications
    • …
    corecore