214 research outputs found

    Wadge Degrees of ω\omega-Languages of Petri Nets

    Full text link
    We prove that ω\omega-languages of (non-deterministic) Petri nets and ω\omega-languages of (non-deterministic) Turing machines have the same topological complexity: the Borel and Wadge hierarchies of the class of ω\omega-languages of (non-deterministic) Petri nets are equal to the Borel and Wadge hierarchies of the class of ω\omega-languages of (non-deterministic) Turing machines which also form the class of effective analytic sets. In particular, for each non-null recursive ordinal α<ω_1CK\alpha < \omega\_1^{{\rm CK}} there exist some Σ0_α{\bf \Sigma}^0\_\alpha-complete and some Π0_α{\bf \Pi}^0\_\alpha-complete ω\omega-languages of Petri nets, and the supremum of the set of Borel ranks of ω\omega-languages of Petri nets is the ordinal γ_21\gamma\_2^1, which is strictly greater than the first non-recursive ordinal ω_1CK\omega\_1^{{\rm CK}}. We also prove that there are some Σ_11{\bf \Sigma}\_1^1-complete, hence non-Borel, ω\omega-languages of Petri nets, and that it is consistent with ZFC that there exist some ω\omega-languages of Petri nets which are neither Borel nor Σ_11{\bf \Sigma}\_1^1-complete. This answers the question of the topological complexity of ω\omega-languages of (non-deterministic) Petri nets which was left open in [DFR14,FS14].Comment: arXiv admin note: text overlap with arXiv:0712.1359, arXiv:0804.326

    Highly Undecidable Problems For Infinite Computations

    Get PDF
    We show that many classical decision problems about 1-counter omega-languages, context free omega-languages, or infinitary rational relations, are Π21\Pi_2^1-complete, hence located at the second level of the analytical hierarchy, and "highly undecidable". In particular, the universality problem, the inclusion problem, the equivalence problem, the determinizability problem, the complementability problem, and the unambiguity problem are all Π21\Pi_2^1-complete for context-free omega-languages or for infinitary rational relations. Topological and arithmetical properties of 1-counter omega-languages, context free omega-languages, or infinitary rational relations, are also highly undecidable. These very surprising results provide the first examples of highly undecidable problems about the behaviour of very simple finite machines like 1-counter automata or 2-tape automata.Comment: to appear in RAIRO-Theoretical Informatics and Application

    Topological Complexity of Locally Finite omega-Languages

    Get PDF
    to appear in Archive for Mathematical LogicInternational audienceLocally finite omega-languages were introduced by Ressayre in [Formal Languages defined by the Underlying Structure of their Words, Journal of Symbolic Logic, 53 (4), December 1988, p. 1009-1026]. These languages are defined by local sentences and extend omega-languages accepted by Büchi automata or defined by monadic second order sentences. We investigate their topological complexity. All locally finite omega languages are analytic sets, the class LOC_omega of locally finite omega-languages meets all finite levels of the Borel hierarchy and there exist some locally finite omega-languages which are Borel sets of infinite rank or even analytic but non-Borel sets. This gives partial answers to questions of Simonnet [Automates et Théorie Descriptive, Ph. D. Thesis, Université Paris 7, March 1992] and of Duparc, Finkel, and Ressayre [Computer Science and the Fine Structure of Borel Sets, Theoretical Computer Science, Volume 257 (1-2), 2001, p.85-105]

    Borel Ranks and Wadge Degrees of Context Free Omega Languages

    Get PDF
    We show that, from a topological point of view, considering the Borel and the Wadge hierarchies, 1-counter B\"uchi automata have the same accepting power than Turing machines equipped with a B\"uchi acceptance condition. In particular, for every non null recursive ordinal alpha, there exist some Sigma^0_alpha-complete and some Pi^0_alpha-complete omega context free languages accepted by 1-counter B\"uchi automata, and the supremum of the set of Borel ranks of context free omega languages is the ordinal gamma^1_2 which is strictly greater than the first non recursive ordinal. This very surprising result gives answers to questions of H. Lescow and W. Thomas [Logical Specifications of Infinite Computations, In:"A Decade of Concurrency", LNCS 803, Springer, 1994, p. 583-621]

    Remarks on Parikh-recognizable omega-languages

    Full text link
    Several variants of Parikh automata on infinite words were recently introduced by Guha et al. [FSTTCS, 2022]. We show that one of these variants coincides with blind counter machine as introduced by Fernau and Stiebe [Fundamenta Informaticae, 2008]. Fernau and Stiebe showed that every ω\omega-language recognized by a blind counter machine is of the form ⋃iUiViω\bigcup_iU_iV_i^\omega for Parikh recognizable languages Ui,ViU_i, V_i, but blind counter machines fall short of characterizing this class of ω\omega-languages. They posed as an open problem to find a suitable automata-based characterization. We introduce several additional variants of Parikh automata on infinite words that yield automata characterizations of classes of ω\omega-language of the form ⋃iUiViω\bigcup_iU_iV_i^\omega for all combinations of languages Ui,ViU_i, V_i being regular or Parikh-recognizable. When both UiU_i and ViV_i are regular, this coincides with B\"uchi's classical theorem. We study the effect of ε\varepsilon-transitions in all variants of Parikh automata and show that almost all of them admit ε\varepsilon-elimination. Finally we study the classical decision problems with applications to model checking.Comment: arXiv admin note: text overlap with arXiv:2302.04087, arXiv:2301.0896

    Decision Problems For Turing Machines

    Get PDF
    We answer two questions posed by Castro and Cucker, giving the exact complexities of two decision problems about cardinalities of omega-languages of Turing machines. Firstly, it is D2(Σ11)D_2(\Sigma_1^1)-complete to determine whether the omega-language of a given Turing machine is countably infinite, where D2(Σ11)D_2(\Sigma_1^1) is the class of 2-differences of Σ11\Sigma_1^1-sets. Secondly, it is Σ11\Sigma_1^1-complete to determine whether the omega-language of a given Turing machine is uncountable.Comment: To appear in Information Processing Letter

    There Exist some Omega-Powers of Any Borel Rank

    Get PDF
    Omega-powers of finitary languages are languages of infinite words (omega-languages) in the form V^omega, where V is a finitary language over a finite alphabet X. They appear very naturally in the characterizaton of regular or context-free omega-languages. Since the set of infinite words over a finite alphabet X can be equipped with the usual Cantor topology, the question of the topological complexity of omega-powers of finitary languages naturally arises and has been posed by Niwinski (1990), Simonnet (1992) and Staiger (1997). It has been recently proved that for each integer n > 0, there exist some omega-powers of context free languages which are Pi^0_n-complete Borel sets, that there exists a context free language L such that L^omega is analytic but not Borel, and that there exists a finitary language V such that V^omega is a Borel set of infinite rank. But it was still unknown which could be the possible infinite Borel ranks of omega-powers. We fill this gap here, proving the following very surprising result which shows that omega-powers exhibit a great topological complexity: for each non-null countable ordinal alpha, there exist some Sigma^0_alpha-complete omega-powers, and some Pi^0_alpha-complete omega-powers.Comment: To appear in the Proceedings of the 16th EACSL Annual Conference on Computer Science and Logic, CSL 2007, Lausanne, Switzerland, September 11-15, 2007, Lecture Notes in Computer Science, (c) Springer, 200
    • …
    corecore