214 research outputs found
Wadge Degrees of -Languages of Petri Nets
We prove that -languages of (non-deterministic) Petri nets and
-languages of (non-deterministic) Turing machines have the same
topological complexity: the Borel and Wadge hierarchies of the class of
-languages of (non-deterministic) Petri nets are equal to the Borel and
Wadge hierarchies of the class of -languages of (non-deterministic)
Turing machines which also form the class of effective analytic sets. In
particular, for each non-null recursive ordinal there exist some -complete and some -complete -languages of Petri nets, and the supremum of
the set of Borel ranks of -languages of Petri nets is the ordinal
, which is strictly greater than the first non-recursive ordinal
. We also prove that there are some -complete, hence non-Borel, -languages of Petri nets, and
that it is consistent with ZFC that there exist some -languages of
Petri nets which are neither Borel nor -complete. This
answers the question of the topological complexity of -languages of
(non-deterministic) Petri nets which was left open in [DFR14,FS14].Comment: arXiv admin note: text overlap with arXiv:0712.1359, arXiv:0804.326
Highly Undecidable Problems For Infinite Computations
We show that many classical decision problems about 1-counter
omega-languages, context free omega-languages, or infinitary rational
relations, are -complete, hence located at the second level of the
analytical hierarchy, and "highly undecidable". In particular, the universality
problem, the inclusion problem, the equivalence problem, the determinizability
problem, the complementability problem, and the unambiguity problem are all
-complete for context-free omega-languages or for infinitary rational
relations. Topological and arithmetical properties of 1-counter
omega-languages, context free omega-languages, or infinitary rational
relations, are also highly undecidable. These very surprising results provide
the first examples of highly undecidable problems about the behaviour of very
simple finite machines like 1-counter automata or 2-tape automata.Comment: to appear in RAIRO-Theoretical Informatics and Application
Topological Complexity of Locally Finite omega-Languages
to appear in Archive for Mathematical LogicInternational audienceLocally finite omega-languages were introduced by Ressayre in [Formal Languages defined by the Underlying Structure of their Words, Journal of Symbolic Logic, 53 (4), December 1988, p. 1009-1026]. These languages are defined by local sentences and extend omega-languages accepted by Büchi automata or defined by monadic second order sentences. We investigate their topological complexity. All locally finite omega languages are analytic sets, the class LOC_omega of locally finite omega-languages meets all finite levels of the Borel hierarchy and there exist some locally finite omega-languages which are Borel sets of infinite rank or even analytic but non-Borel sets. This gives partial answers to questions of Simonnet [Automates et Théorie Descriptive, Ph. D. Thesis, Université Paris 7, March 1992] and of Duparc, Finkel, and Ressayre [Computer Science and the Fine Structure of Borel Sets, Theoretical Computer Science, Volume 257 (1-2), 2001, p.85-105]
Borel Ranks and Wadge Degrees of Context Free Omega Languages
We show that, from a topological point of view, considering the Borel and the
Wadge hierarchies, 1-counter B\"uchi automata have the same accepting power
than Turing machines equipped with a B\"uchi acceptance condition. In
particular, for every non null recursive ordinal alpha, there exist some
Sigma^0_alpha-complete and some Pi^0_alpha-complete omega context free
languages accepted by 1-counter B\"uchi automata, and the supremum of the set
of Borel ranks of context free omega languages is the ordinal gamma^1_2 which
is strictly greater than the first non recursive ordinal. This very surprising
result gives answers to questions of H. Lescow and W. Thomas [Logical
Specifications of Infinite Computations, In:"A Decade of Concurrency", LNCS
803, Springer, 1994, p. 583-621]
Remarks on Parikh-recognizable omega-languages
Several variants of Parikh automata on infinite words were recently
introduced by Guha et al. [FSTTCS, 2022]. We show that one of these variants
coincides with blind counter machine as introduced by Fernau and Stiebe
[Fundamenta Informaticae, 2008]. Fernau and Stiebe showed that every
-language recognized by a blind counter machine is of the form
for Parikh recognizable languages , but
blind counter machines fall short of characterizing this class of
-languages. They posed as an open problem to find a suitable
automata-based characterization. We introduce several additional variants of
Parikh automata on infinite words that yield automata characterizations of
classes of -language of the form for all
combinations of languages being regular or Parikh-recognizable. When
both and are regular, this coincides with B\"uchi's classical
theorem. We study the effect of -transitions in all variants of
Parikh automata and show that almost all of them admit
-elimination. Finally we study the classical decision problems
with applications to model checking.Comment: arXiv admin note: text overlap with arXiv:2302.04087,
arXiv:2301.0896
Decision Problems For Turing Machines
We answer two questions posed by Castro and Cucker, giving the exact
complexities of two decision problems about cardinalities of omega-languages of
Turing machines. Firstly, it is -complete to determine whether
the omega-language of a given Turing machine is countably infinite, where
is the class of 2-differences of -sets. Secondly,
it is -complete to determine whether the omega-language of a given
Turing machine is uncountable.Comment: To appear in Information Processing Letter
There Exist some Omega-Powers of Any Borel Rank
Omega-powers of finitary languages are languages of infinite words
(omega-languages) in the form V^omega, where V is a finitary language over a
finite alphabet X. They appear very naturally in the characterizaton of regular
or context-free omega-languages. Since the set of infinite words over a finite
alphabet X can be equipped with the usual Cantor topology, the question of the
topological complexity of omega-powers of finitary languages naturally arises
and has been posed by Niwinski (1990), Simonnet (1992) and Staiger (1997). It
has been recently proved that for each integer n > 0, there exist some
omega-powers of context free languages which are Pi^0_n-complete Borel sets,
that there exists a context free language L such that L^omega is analytic but
not Borel, and that there exists a finitary language V such that V^omega is a
Borel set of infinite rank. But it was still unknown which could be the
possible infinite Borel ranks of omega-powers. We fill this gap here, proving
the following very surprising result which shows that omega-powers exhibit a
great topological complexity: for each non-null countable ordinal alpha, there
exist some Sigma^0_alpha-complete omega-powers, and some Pi^0_alpha-complete
omega-powers.Comment: To appear in the Proceedings of the 16th EACSL Annual Conference on
Computer Science and Logic, CSL 2007, Lausanne, Switzerland, September 11-15,
2007, Lecture Notes in Computer Science, (c) Springer, 200
- …