3,223,850 research outputs found

    Seasonal measurements of total OH reactivity emission rates from Norway spruce in 2011

    Get PDF
    Numerous reactive volatile organic compounds (VOCs) are emitted into the atmosphere by vegetation. Most biogenic VOCs are highly reactive towards the atmosphere's most important oxidant, the hydroxyl (OH) radical. One way to investigate the chemical interplay between biosphere and atmosphere is through the measurement of total OH reactivity, the total loss rate of OH radicals. This study presents the first determination of total OH reactivity emission rates (measurements via the comparative reactivity method) based on a branch cuvette enclosure system mounted on a Norway spruce (Picea abies) throughout spring, summer and autumn 2011. In parallel VOC emission rates were monitored by a second proton-transfer-reaction mass spectrometer (PTR-MS), and total ozone (O3) loss rates were obtained inside the cuvette. Total OH reactivity emission rates were in general temperature and light dependent, showing strong diel cycles with highest values during daytime. Monoterpene emissions contributed most, accounting for 56–69% of the measured total OH reactivity flux in spring and early summer. However, during late summer and autumn the monoterpene contribution decreased to 11–16%. At this time, a large missing fraction of the total OH reactivity emission rate (70–84%) was found when compared to the VOC budget measured by PTR-MS. Total OH reactivity and missing total OH reactivity emission rates reached maximum values in late summer corresponding to the period of highest temperature. Total O3 loss rates within the closed cuvette showed similar diel profiles and comparable seasonality to the total OH reactivity fluxes. Total OH reactivity fluxes were also compared to emissions from needle storage pools predicted by a temperature-only-dependent algorithm. Deviations of total OH reactivity fluxes from the temperature-only-dependent emission algorithm were observed for occasions of mechanical and heat stress. While for mechanical stress, induced by strong wind, measured VOCs could explain total OH reactivity emissions, during heat stress they could not. The temperature-driven algorithm matched the diel variation of total OH reactivity emission rates much better in spring than in summer, indicating a different production and emission scheme for summer and early autumn. During these times, unmeasured and possibly unknown primary biogenic emissions contributed significantly to the observed total OH reactivity flux

    OH+ in Diffuse Molecular Clouds

    Get PDF
    Near ultraviolet observations of OH+ and OH in diffuse molecular clouds reveal a preference for different environments. The dominant absorption feature in OH+ arises from a main component seen in CH+ (that with the highest CH+/CH column density ratio), while OH follows CN absorption. This distinction provides new constraints on OH chemistry in these clouds. Since CH+ detections favor low-density gas with small fractions of molecular hydrogen, this must be true for OH+ as well, confirming OH+ and H2O+ observations with the Herschel Space Telescope. Our observed correspondence indicates that the cosmic ray ionization rate derived from these measurements pertains to mainly atomic gas. The association of OH absorption with gas rich in CN is attributed to the need for high enough density and molecular fraction before detectable amounts are seen. Thus, while OH+ leads to OH production, chemical arguments suggest that their abundances are controlled by different sets of conditions and that they coexist with different sets of observed species. Of particular note is that non-thermal chemistry appears to play a limited role in the synthesis of OH in diffuse molecular clouds.Comment: 15 pages, 4 figures, to appear in ApJ Letter

    A comprehensive study of infrared OH prompt emission in two comets. I. Observations and effective g-factors

    Get PDF
    We present high-dispersion infrared spectra of hydroxyl (OH) in comets C/2000 WM1 (LINEAR) and C/2004 Q2 (Machholz), acquired with the Near Infrared Echelle Spectrograph at the Keck Observatory atop Mauna Kea, Hawaii. Most of these rovibrational transitions result from photodissociative excitation of H_2O giving rise to OH "prompt" emission. We present calibrated emission efficiencies (equivalent g-factors, measured in OH photons s^(-1) [H_2O molecule]^(-1)) for more than 20 OH lines sampled in these two comets. The OH transitions analyzed cover a broad range of rotational excitation. This infrared database for OH can be used in two principal ways: (1) as an indirect tool for obtaining water production in comets simultaneously with the production of other parent volatiles, even when direct detections of H_2O are not available; and (2) as an observational constraint to models predicting the rotational distribution of rovibrationally excited OH produced by water photolysis

    Products of Vitamin D3 or 7-Dehydrocholesterol Metabolism by Cytochrome P450scc Show Anti-Leukemia Effects, Having Low or Absent Calcemic Activity

    Get PDF
    BACKGROUND. Cytochrome P450scc metabolizes vitamin D3 to 20-hydroxyvitamin D3 (20(OH)D3) and 20,23(OH)2D3, as well as 1-hydroxyvitamin D3 to 1a,20-dihydroxyvitamin D3 (1,20(OH)2D3). It also cleaves the side chain of 7-dehydrocholesterol producing 7-dehydropregnenolone (7DHP), which can be transformed to 20(OH)7DHP. UVB induces transformation of the steroidal 5,7-dienes to pregnacalciferol (pD) and a lumisterol-like compounds (pL). METHODS AND FINDINGS. To define the biological significance of these P450scc-initiated pathways, we tested the effects of their 5,7-diene precursors and secosteroidal products on leukemia cell differentiation and proliferation in comparison to 1a,25-dihydroxyvitamin D3 (1,25(OH)2D3). These secosteroids inhibited proliferation and induced erythroid differentiation of K562 human chronic myeloid and MEL mouse leukemia cells with 20(OH)D3 and 20,23(OH)2D3 being either equipotent or slightly less potent than 1,25(OH)2D3, while 1,20(OH)2D3, pD and pL compounds were slightly or moderately less potent. The compounds also inhibited proliferation and induced monocytic differentiation of HL-60 promyelocytic and U937 promonocytic human leukemia cells. Among them 1,25(OH)2D3 was the most potent, 20(OH)D3, 20,23(OH)2D3 and 1,20(OH)2D3 were less active, and pD and pL compounds were the least potent. Since it had been previously proven that secosteroids without the side chain (pD) have no effect on systemic calcium levels we performed additional testing in rats and found that 20(OH)D3 had no calcemic activity at concentration as high as 1 µg/kg, whereas, 1,20(OH)2D3 was slightly to moderately calcemic and 1,25(OH)2D3 had strong calcemic activity. CONCLUSIONS. We identified novel secosteroids that are excellent candidates for anti-leukemia therapy with 20(OH)D3 deserving special attention because of its relatively high potency and lack of calcemic activity.National Institutes of Health (R01A052190

    Ferrocenyl hydroxymethylphosphines (η⁵-C₅H₅)Fe[η⁵⁻C₅H₄P(CH₂OH)₂] and 1,1′-[Fe{η⁵-C₅H₄P(CH₂OH)₂}₂] and their chalcogenide derivatives

    Get PDF
    The ferrocenyl hydroxymethylphosphines FcP(CH₂OH)₂ [Fc=(η⁵-C₅H₅)Fe(η⁵-C₅H₄)] and 1,1′-Fc′[P(CH₂OH)₂]₂ [Fc′=Fe(η⁵⁻C₅H₄)₂] were prepared by reactions of the corresponding primary phosphines FcPH₂ and 1,1′-Fc′(PH₂)₂ with excess aqueous formaldehyde. The crystal structure of FcP(CH₂OH)₂ was determined and compared with the known ferrocenyl hydroxymethylphosphine FcCH₂P(CH₂OH)₂. The chalcogenide derivatives FcP(E)(CH₂OH)₂ and 1,1′-Fc′[P(E)(CH₂OH)₂]₂ (E=O, S, Se) were prepared and fully characterised. Crystal structure determinations on FcP(O)(CH₂OH)₂ and FcP(S)(CH₂OH)₂ were performed, and the hydrogen-bonding patterns are compared with related compounds. The sulfide shows no hydrogen-bonding involving the phosphine sulfide group, in contrast to other reported ferrocenyl hydroxymethylphosphine sulfides. The platinum complex cis-[PtCl₂{FcP(CH₂OH)₂}₂] was prepared by reaction of 2 mol equivalents of FcP(CH₂OH)₂ with [PtCl₂(1,5-cyclo-octadiene)], and was characterised by 31P-NMR spectroscopy and negative ion electrospray mass spectrometry, which gave a strong [M+Cl]⁻ ion

    Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period

    Get PDF
    The modeling study presented here aims to estimate how uncertainties in global hydroxyl radical (OH) distributions, variability, and trends may contribute to resolving discrepancies between simulated and observed methane (CH4) changes since 2000. A multi-model ensemble of 14 OH fields was analyzed and aggregated into 64 scenarios to force the offline atmospheric chemistry transport model LMDz (Laboratoire de Meteorologie Dynamique) with a standard CH4 emission scenario over the period 2000–2016. The multi-model simulated global volume-weighted tropospheric mean OH concentration ([OH]) averaged over 2000–2010 ranges between 8:7*10^5 and 12:8*10^5 molec cm-3. The inter-model differences in tropospheric OH burden and vertical distributions are mainly determined by the differences in the nitrogen oxide (NO) distributions, while the spatial discrepancies between OH fields are mostly due to differences in natural emissions and volatile organic compound (VOC) chemistry. From 2000 to 2010, most simulated OH fields show an increase of 0.1–0:3*10^5 molec cm-3 in the tropospheric mean [OH], with year-to-year variations much smaller than during the historical period 1960–2000. Once ingested into the LMDz model, these OH changes translated into a 5 to 15 ppbv reduction in the CH4 mixing ratio in 2010, which represents 7%–20% of the model-simulated CH4 increase due to surface emissions. Between 2010 and 2016, the ensemble of simulations showed that OH changes could lead to a CH4 mixing ratio uncertainty of > 30 ppbv. Over the full 2000–2016 time period, using a common stateof- the-art but nonoptimized emission scenario, the impact of [OH] changes tested here can explain up to 54% of the gap between model simulations and observations. This result emphasizes the importance of better representing OH abundance and variations in CH4 forward simulations and emission optimizations performed by atmospheric inversions

    Seasonal measurements of total OH reactivity fluxes, total ozone loss rates and missing emissions from Norway spruce in 2011 [Discussion paper]

    Get PDF
    Numerous reactive volatile organic compounds (VOCs) are emitted into the atmosphere by vegetation. Most biogenic VOCs are highly reactive towards the atmosphere's most important oxidant, the hydroxyl (OH) radical. One way to investigate the chemical interplay between biosphere and atmosphere is through the measurement of total OH reactivity, the total loss rate of OH radicals. This study presents the first determination of total OH reactivity emission rates (measurements via the Comparative Reactivity Method) based on a branch cuvette enclosure system mounted on a Norway spruce (Picea abies) throughout spring, summer and autumn 2011. In parallel separate VOC emission rates were monitored by a Proton Transfer Reaction-Mass Spectrometer (PTR-MS), and total ozone (O3) loss rates were obtained inside the cuvette. Total OH reactivity emission rates were in general temperature and light dependent, showing strong diel cycles with highest values during daytime. Monoterpene emissions contributed most, accounting for 56–69% of the measured total OH reactivity flux in spring and early summer. However, during late summer and autumn the monoterpene contribution decreased to 11–16%. At this time, a large missing fraction of the total OH reactivity emission rate (70–84%) was found when compared to the VOC budget measured by PTR-MS. Total OH reactivity and missing total OH reactivity emission rates reached maximum values in late summer corresponding to the period of highest temperature. Total O3 loss rates within the closed cuvette showed similar diel profiles and comparable seasonality to the total OH reactivity fluxes. Total OH reactivity fluxes were also compared to emissions from needle storage pools predicted by a temperature-only dependent algorithm. Deviations of total OH reactivity fluxes from the temperature-only dependent emission algorithm were observed for occasions of mechanical and heat stress. While for mechanical stress, induced by strong wind, measured VOCs could explain total OH reactivity emissions, during heat stress they could not. The temperature driven algorithm matched the diel course much better in spring than in summer, indicating a different production and emission scheme for summer and early autumn. During these times, unmeasured and possibly unknown primary biogenic emissions contributed significantly to the observed total OH reactivity flux

    SOFIA observations of far-infrared hydroxyl emission toward classical ultracompact HII/OH maser regions

    Full text link
    The hydroxyl radical (OH) is found in various environments within the interstellar medium (ISM) of the Milky Way and external galaxies, mostly either in diffuse interstellar clouds or in the warm, dense environments of newly formed low-mass and high-mass stars, i.e, in the dense shells of compact and ultracompact HII regions (UCHIIRs). Until today, most studies of interstellar OH involved the molecule's radio wavelength hyperfine structure (hfs) transitions. These lines are generally not in LTE and either masing or over-cooling complicates their interpretation. In the past, observations of transitions between different rotational levels of OH, which are at far-infrared wavelengths, have suffered from limited spectral and angular resolution. Since these lines have critical densities many orders of magnitude higher than the radio wavelength ground state hfs lines and are emitted from levels with more than 100 K above the ground state, when observed in emission, they probe very dense and warm material. We probe the warm and dense molecular material surrounding the UCHIIR/OH maser sources W3(OH), G10.62-0.39 and NGC 7538 IRS1 by studying the 2Π1/2,J=3/21/2^2\Pi_{{1/2}}, J = {3/2} - {1/2} rotational transition of OH in emission and, toward the last source also the molecule's 2Π3/2,J=5/23/2^2\Pi_{3/2}, J = 5/2 - 3/2 ground-state transition in absorption. We used the Stratospheric Observatory for Infrared Astronomy (SOFIA) to observe these OH lines, which are near 1.84 THz (163μ163 \mum) and 2.51 THz (119.3μ119.3 \mum). We clearly detect the OH lines, some of which are blended with each other. Employing non-LTE radiative transfer calculations we predict line intensities using models of a low OH abundance envelope versus a compact, high-abundance source corresponding to the origin of the radio OH lines.Comment: Accepted for publication in A&A (SOFIA/GREAT special issue
    corecore