927,653 research outputs found
Numerical Analyses of Weakly Nonlinear Velocity-Density Coupling
We study evolution of various statistical quantities of smoothed cosmic
density and velocity fields using N-body simulations. The parameter
characterizes nonlinear coupling of
these two fields and determines behavior of bulk velocity dispersion as a
function of local density contrast.
It is found that this parameter depends strongly on the smoothing scale even
in quasi-linear regimes where the skewness parameter
is nearly constant and close to the predicted value by the second-order
perturbation theory. We also analyze weakly nonlinear effects caused by an
adaptive smoothing known as the gather approach.Comment: 22 pages, 4 figures, to appear in ApJ (558, Sep 10
Dissipative behaviour of reinforced-earth retaining structures under severe ground motion
This paper focuses on the seismic performance of geosynthetic-reinforced retaining walls (GRWs) that several evidences have shown to be generally adequate. This can be attributed to the dissipation of energy produced by the internal plastic mechanisms activated during the seismic shaking, and to an overall ductile behaviour related to the large deformation that can be accommodated by the soil-reinforcement system. Using a number of numerical computations, this work compares the behaviour of three idealized structures that were conceived in order to have a similar seismic resistance, that however is activated through different plastic mechanisms. The analyses include numerical pseudo-static computations, carried out iteratively to failure, and time-domain nonlinear dynamic analyses, in which acceleration time-histories were applied to the bottom boundary of the same numerical models used for the pseudo-static analyses. The results of the dynamic analyses were interpreted in the light of the plastic mechanisms obtained with the pseudo-static procedure, confirming that GRWs develop local plastic mechanisms during strong motion resulting in a significant improvement of their seismic performance
Analytical and numerical analyses of the micromechanics of soft fibrous connective tissues
State of the art research and treatment of biological tissues require
accurate and efficient methods for describing their mechanical properties.
Indeed, micromechanics motivated approaches provide a systematic method for
elevating relevant data from the microscopic level to the macroscopic one. In
this work the mechanical responses of hyperelastic tissues with one and two
families of collagen fibers are analyzed by application of a new variational
estimate accounting for their histology and the behaviors of their
constituents. The resulting, close form expressions, are used to determine the
overall response of the wall of a healthy human coronary artery. To demonstrate
the accuracy of the proposed method these predictions are compared with
corresponding 3-D finite element simulations of a periodic unit cell of the
tissue with two families of fibers. Throughout, the analytical predictions for
the highly nonlinear and anisotropic tissue are in agreement with the numerical
simulations
Effect of moisture on mechanical behavior of granular material in initial laboratory and mechanical tests
In this article authors present results of initial
laboratory tests and further numerical analyses using
finite element method (FEM) and back - calculation
method. Laboratory tests are based on trial loadings of
granular material in different moisture conditions. Numerical
analyses were obtained in FEM software using
Coulomb - Mohr model of tested material. Presented
results are the part of wider research program in which
the main aim is to evaluate the influence of variable
moisture content of granular materials used in road
pavement structures on their fatigue life and in Life
Cycle Assessment (LCA)
Modeling of ductile damage using numerical analyses on the micro-scale
The presentation deals with a continuum damage model which has been generalized to take into account the effect of stress state on damage criteria as well as on evolution equations of damage strains. It is based on the introduction of damaged and corresponding undamaged configurations. Plastic behavior is modeled by a yield criterion and a flow rule formulated in the effective stress space (undamaged configurations). In a similar way, damage behavior is governed by a damage criterion and a damage rule considering the damaged configurations. Different branches of the damage criterion are considered corresponding to various damage mechanisms depending on stress intensity, stress triaxiality and the Lode parameter. Experiments with carefully designed specimens are performed and the test results are used to identify basic material parameters. However, it is not possible to determine all parameters based on these tension and shear tests. To be able to get more insight in the complex damage behavior under different loading conditions, additional series of micro-mechanical numerical analyses of void containing unit cells have been performed. These finite element calculations on the micro-level cover a wide range of stress triaxialities and Lode parameters in the tension, shear and compression domain. The numerical results are used to show general trends, to develop equations for the stress-statedependent damage criteria, to propose evolution equations of damage strains, and to identify parameters of the continuum model
Three-dimensional advanced numerical approaches to the seismic soil and structural response analyses
A 3D non-linear finite element approach is developed to study the free-field seismic ground response and the soil-structure interaction (SSI) phenomena at the Lotung site (Taiwan) during the earthquake event occurred on May 20 1986. The site was extensively instrumented with down-hole and surface ac- celerometers, these latter located also on a 1/4–scale nuclear power plant containment structure. An advanced constitutive model is adopt- ed for simulating the soil behaviour, while a linear visco-elastic be- haviour is assumed for the structural model. The free-field and SSI analyses are carried out applying both the NS and EW horizontal components of the acceleration time history as recorded at the depth of 47 m b.g.l. The predicted ground response re- sults are in fair agreement with the recorded motion at depth and at the surface. The dynamic response of structure is well captured for this specific seismic event, thus confirming the validity of the numerical approach
Self-force with (3+1) codes: a primer for numerical relativists
Prescriptions for numerical self-force calculations have traditionally been
designed for frequency-domain or (1+1) time-domain codes which employ a mode
decomposition to facilitate in carrying out a delicate regularization scheme.
This has prevented self-force analyses from benefiting from the powerful suite
of tools developed and used by numerical relativists for simulations of the
evolution of comparable-mass black hole binaries. In this work, we revisit a
previously-introduced (3+1) method for self-force calculations, and demonstrate
its viability by applying it to the test case of a scalar charge moving in a
circular orbit around a Schwarzschild black hole. Two (3+1) codes originally
developed for numerical relativity applications were independently employed,
and in each we were able to compute the two independent components of the
self-force and the energy flux correctly to within . We also demonstrate
consistency between -component of the self-force and the scalar energy flux.
Our results constitute the first successful calculation of a self-force in a
(3+1) framework, and thus open opportunities for the numerical relativity
community in self-force analyses and the perturbative modeling of
extreme-mass-ratio inspirals.Comment: 23 pages, 13 figure
- …
