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Abstract 
  A 3D non-linear finite element approach is developed to study the 

free-field seismic ground response and the soil-structure interaction 

(SSI) phenomena at the Lotung site (Taiwan) during the earthquake 

event occurred on May 20 1986. 

The site was extensively instrumented with down-hole and surface ac-

celerometers, these latter located also on a 1/4–scale nuclear power 

plant containment structure. An advanced constitutive model is adopt-

ed for simulating the soil behaviour, while a linear visco-elastic be-

haviour is assumed for the structural model. 

The free-field and SSI analyses are carried out applying both the NS 

and EW horizontal components of the acceleration time history as 

recorded at the depth of 47 m b.g.l. The predicted ground response re-

sults are in fair agreement with the recorded motion at depth and at the 

surface. The dynamic response of structure is well captured for this 

specific seismic event, thus confirming the validity of the numerical 

approach. 
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1.  Introduction 

 

  It is largely recognised that, during an earthquake, the dynamic re-

sponse of a structure is generally affected by the compliance of the 

soil-foundation system and its motion is typically different from that 

experienced by the same structure founded on a rigid base. The main 

consequence of this interaction is the reduction of the fundamental 

frequency of the structure and the variation of its damping ratio [1,2]. 

  The soil-structure interaction (SSI) effects have traditionally been 

evaluated by the substructure method, which separately estimates the 

kinematic and inertial interaction effects, implicitly assuming linearity 

in both soil and structure behaviour. Nevertheless, the soil nonlineari-

ty should be accounted for to correctly predict the seismic ground re-

sponse and the SSI effects, especially when strong motion earthquakes 

occur. Thus, a complete dynamic analysis becomes more appropriate 

to study this phenomenon: a realistic non-linear analysis should be 

carried out in the time domain, consisting in analysing the entire soil-

structure system in a single model [3]. 

  In the present paper the back-analysis of the seismic ground re-

sponse and the SSI phenomena affecting a 1/4-scale nuclear power 

plant containment structure, as recorded at the Lotung Large-Scale 

Seismic Test (LSST) site during the May 20 1986 earthquake, is car-

ried out by means of a 3D non-linear finite (FE) model, implemented 

through the FE code PLAXIS 3D [4]. The non-linear soil behaviour is 

described by the elasto-plastic hysteretic model Hardening Soil model 

with Small-Strain Stiffness (HSsmall) available in the material model 

library of the FE code, while a linear visco-elastic model is assumed 

for the structural response. 

  The HSsmall soil constitutive model has recently been adopted for 

dynamic engineering applications [5,6] and its capability in predicting 

seismic ground response has been investigated under both mono-

directional and multi-directional conditions [7,8]. Furthermore, the 3D 

numerical approach has been used to perform SSI analyses under 

mono-directional conditions (i.e. applying only the EW horizontal 

component of input motion) [9]. 

  In the present study, the 3D numerical analyses are carried out con-

sidering the seismic motion multi-directionality. Thus, both EW and 
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NS horizontal components of the acceleration time history, as record-

ed by the deepest accelerometer of the down-hole accelerometric ar-

ray, are applied simultaneously at the base of the FE numerical model. 

Results of the non-linear analyses are compared to the in-situ recorded 

down-hole and surface motions and to the acceleration time histories 

monitored on the 1/4-scale containment structure. 

 

2.  The Lotung LSST case study 

 

  The Large-Scale Seismic Test (LSST) was a research programme 

(1985-1990), led by the Electric Power Research Institute (EPRI) in 

co-operation with the Taiwan Power Company (TPC), consisting in 

studying the seismic ground response and the dynamic response of 

two small-scale (1/4-scale and 1/12-scale models) nuclear power plant 

containment structures. The LSST site was located in Lotung, a highly 

seismic region in the North-East of Taiwan.  

  The 1/4-scale containment model was a reinforced concrete cylin-

drical shell structure of external radius of 10.52 m, with a flat roof 

slab and a flat bottom basement. The structure is embedded at the 

depth of 4.57 m below the ground surface. Within the containment 

model, a steel shell structure simulating a steam generator prototype 

of a nuclear power plant was installed.  

  The LSST site and the 1/4-scale containment structure were exten-

sively instrumented to record both soil and structural responses during 

earthquakes that occurred at the test site. 

  Concerning the ground instrumentation, two down-hole arrays, ex-

tended to a depth of 47 m from ground surface, were installed to rec-

ord soil motion at different depths, while three surface arrays were 

placed along three arms (Arm 1, 2 and 3) of radius of about 47 m from 

the edge of the 1/4-scale model, as depicted in Figure 1 [10]. 

  As far as the 1/4-scale model concerns, four accelerometers were 

placed on the basement of the containment structure and four at the 

top surface of the model, along EW and NS diametrical directions. In 

addition, two accelerometers were placed at the top and the bottom of 

the steam generator prototype. The monitoring scheme of the 1/4-scale 

structural model is illustrated in Figure 2 [11]. 
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  The LSST site is located on the Lanyang River plain, which lies on 

two layers of recent alluvium and Pleistocene deposits, overlying a 

Miocene basement layer situated at 400 m of depth [12]. 

 
Figure 1. Layout of the surface and down-hole instrumentation: (a) down-hole in-

strument arrays and (b) surface instrument arrays (after Tang[10])  

 
Figure 2. Location of accelerometers on the 1/4-scale model of the containment 

structure: (a) vertical and (b) horizontal cross-section (modified from [11])  

   

The local geotechnical profile, near the LSST site, is characterized by 

a layer of silty sand, extended from the ground surface down to about 

17 m, above a 6 m thick layer of sand with gravel. Underneath the 

sandy layer, there is a stratum of silty clay detected by the deepest 

borehole down to 47 m, interlayered by an inclusion of sand with 
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gravel between 29 m and 36 m. The water table is intercepted at about 

1 m from the ground surface (Figure 3a). 

  The geotechnical characterisation is based on the few available in 

situ data and on previously published back-analysed seismic data 

[11,13–16]. The strength properties of the coarse-grained soils are ob-

tained from SPT tests (Figure 3b), using the correlation proposed by 

De Mello [17]; due to the lack of direct experimental observations, 

typical values are assumed for the silty clay layer. A total unit weight 

of 19.6 kN/m3 is adopted as an average value for the whole soil depos-

it [13]. The shear wave velocity profile, obtained from cross-hole 

tests, ranges from about 100 m/s to 300 m/s at a depth of 47 m, as 

summarised by Borja et al. [15] (Figure 3c). 

 
Figure 3. Local soil profile at Lotung LSST site: (a) soil stratigraphy; (b) SPT log; 

(c) shear wave velocity  

   

The shear modulus and damping ratio curves for the upper silty sand 

layer are those obtained by Zeghal et al. [14], through an indirect in-

terpretation of 18 earthquakes events occurred between 1985 and 

1986. The decay curves obtained at the depth of 11 m (Figure 4a) are 

assumed in the present FE simulations, as proposed by Borja et al. 
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[16]. Due to the lack of specific laboratory tests, the shear modulus 

and damping ratio curves proposed by Vucetic and Dobry [18] for a 

plasticity index PI equal to 0 and 20 are adopted for the gravelly and 

the silty-clayey layers, respectively (Figure 4b-c). 

 
Figure 4. Local soil profile at Lotung LSST site: (a) soil stratigraphy; (b) SPT log; 

(c) shear wave velocity  

  

In this paper the free-field seismic ground response and the dynamic 

structural behaviour are investigated with reference to both EW and 

NS horizontal components of the acceleration time history, as record-

ed at the depth of 47 m by the accelerometer DHB-47 (Figure 5). The 

considered earthquake is that occurred on May 20 1986 (LLST7), 

https://www.researchgate.net/publication/246020425_Effect_of_soil_plasticity_on_cyclic_response_J_Geotechnical_Eng_ASCE?el=1_x_8&enrichId=rgreq-2e61f36c940b5e5104b2f006ddc8ce3c-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQ3NTc3MztBUzo0MjkwOTY0NTE3NDM3NDRAMTQ3OTMxNTk3NDM0OQ==
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whose features are magnitude 6.5, epicentral distance of 66.2 km and 

duration of 35.48 s. 

 
Figure 5. EW and NS components of the acceleration time histories and relative 

Fourier spectra recorded at DHB-47 during LSST7 earthquake 

 

3.  The HSsmall soil constitutive model 

 

3.1. Description of the HSsmall model 

 

  The soil constitutive model Hardening Soil model with Small-strain 

Stiffness (HSsmall) is an evolution of the Hardening Soil (HS) model, 

proposed by Schanz et al. [19], extended by the elastic small-strain 

overlay model, developed by Benz et al. [20,21]. The HSsmall model 

allows to describe the hysteretic para-elastic behaviour of soil at very 

small strains, by introducing the initial shear stiffness modulus G0 and 

the evolution of the secant shear stiffness ratio Gs /G0 with shear strain 

. The modulus decay curve is implemented as a modified version of 

the simple hyperbolic law proposed by Hardin and Drnevich [22] 

0

0.7

1

1 0.385

sG

G 







       (1) 

where  0.7 is the deformation at which the secant shear modulus is re-

duced to about 70% of G0. 
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  Any variation in the strain increment direction is taken into account 

by means of a scalar strain history-dependent value, Hist, which mem-

orises the deviatoric strain history of the material. Through the strain 

value Hist, a unique value of the tangent stiffness is determined by 

Eq. (2), which describes the stress-strain relationship along all loading 

direction in a multi-axial loading condition. 
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      (2) 

  The tangent shear stiffness modulus Gt (Eq. 2) is limited by a lower 

cut-off value Gur. When the strain level reaches the limit cut-off (Eq. 3), 

the tangent shear stiffness modulus Gt becomes constant and equal to 

the unloading-reloading shear stiffness modulus Gur = Eur /2(1+νur). It 

results: 
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  The same lower limit value, Gur, is asymptotically reached by Gs. 

  Under cyclic conditions, the hysteretic behaviour in unloading-

reloading is formulated by the modified Masing’s rules, which de-

scribe hysteresis loops that gives a measure of energy dissipation [5]. 

  A basic feature of the model is the dependency of the soil stiffness 

on the stress level, which is implemented as a function of the effective 

stress and strength parameters c′ and φ′: 

3
0 0
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cos sin
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c p

  

 

    
  

    
     (4) 

where 0

refG  is the reference initial shear modulus corresponding to the 

reference confining pressure pref (assumed equal to 100 kPa), m is a 

constant that depends on soil type and 3   is the minor principal effec-

tive stress. Similar expressions to Eq. (4) are introduced in the model 

for the definition of the dependency on the state of stress of the un-

loading-reloading modulus Eur, the secant stiffness in standard drained 

triaxial test E50 and the tangent stiffness for primary oedometer load-

ing Eoed. 
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  The HSsmall model is an isotropic hardening elasto-plastic model, 

characterised by two yield surfaces: a shear hardening yield surface, 

resembling the hyperbolic law, which can expand up to the Mohr-

Coulomb failure criterion as a function of the deviatoric plastic strain; 

a cap yield surface, introduced to delimit the elastic region for com-

pressive stress paths, which is governed by plastic volumetric strains. 

 

3.2. HS small model parameters calibration 

 

  The parameter definition is carried out with reference to the availa-

ble data, according to a suitable procedure of calibration. The refer-

ence initial shear stiffness modulus 0

refG  and the parameter m are se-

lected to obtain the best fitting with the shear wave velocity profile 

provided by the cross-hole test (Figure 3c). The shear strain level 0.7 

is calibrated using the decay curves of shear modulus and damping ra-

tio for the para-elastic response regime (Figure 4). The elastic unload-

ing-reloading shear stiffness modulus ref

urG  is determined such that the 

ratio 0

ref ref

urG G  is kept to 4 for the silty sand layer and to 2.5 for the 

other soil layers, leading to a suitable value of cut-off. It might be noted 

that beyond the cut-off shear strain, the damping ratio decreases tend-

ing to zero. In fact, beyond this threshold limit, the tangent stiffness 

modulus becomes constant, but the hysteresis loop becomes narrower 

for increasing strain levels. 

  The other stiffness parameters, 50

refE  and ref

oedE , are assumed as three 

times lower than the elastic unloading-reloading Young’s modulus 
ref

urE , which is evaluated as a function of the Poisson’s ratio νur. For 

coarse-grained soils, the Poisson’s ratio is assumed equal to 0.3, while 

it is considered equal to 0.25 for the silty soil layers. 

  The earth pressure coefficient at rest, K0, is estimated according to 

the Jâky’s expression for coarse-grained soils and according to the ex-

pression valid for overconsolidated soil for fine-grained layers. For the 

sand with gravel and silty sand layers, the overconsolidation ratio 

OCR is fictitiously set to 10 in order to exclude yielding during radial 

compressive stress paths.  
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  A summary of the model parameters involved in the numerical 

analyses is provided in Table 1 for each layer. 

 
Table 1. HS small model parameters 

Soil layer Silty sand 

(0-17 m) 

Sand with gravel 

(17-23 m) 

Silty clay 

(23-29 m) 

Sand with gravel 

 (29-36 m) 

Silty clay 

 (36-47 m) 

c (kPa) 0 0 10 0 10 

φ (°) 30 35 24 37 24 

OCR 10 10 5 10 5 

0

nc
K  0.5 0.4264 0.5933 0.3982 0.5933 

0

oc
K  

- - 1.327 - 1.327 

0

ref
G (MPa) 90 115 65 160 65 

0.7 (%) 0.011 0.01 0.025 0.011 0.025 

m 0.54 0 0.42 0 0.42 

ur 0.3 0.3 0.25 0.3 0.25 

ref

ur
E  (MPa) 60 119.5 65 164.5 65 

50

ref
E  (MPa) 20 39.83 21.67 54.81 21.67 

 

 
Figure 6. Calibration of the Rayleigh viscous damping parameters 

   

In order to introduce a small amount of damping (of about 1-2%) at 

very small strain level, viscous damping is added by means of the 

Rayleigh formulation. The selection of Rayleigh coefficients requires 

a suitable calibration strategy; here the one proposed by Amorosi et al 

[23] was adopted, which requires a preliminary equivalent linear anal-

ysis, performed by the code EERA [24], in order to determine the am-

plification functions. Based on the EW amplification function (Figure 

6), the first control frequency fm is identified as the fundamental fre-
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quency of the soil deposit (fm = 1 Hz), while the second control fre-

quency fn is chosen as the frequency where the amplification function 

becomes lower than one (fn = 3.5 Hz). 
 

4.  The FE numerical model 

 

  The free-field ground response and the dynamic SSI analyses are 

performed under multi-directional seismic conditions, i.e. applying 

both EW and NS components of DHB-47 acceleration time history 

recorded during the LSST7 earthquake. 

  The geometrical model adopted for the free-field seismic ground 

response analysis consists of a soil column of width 10 m x 10 m and 

height equal to 47 m, which is the maximum investigated depth of the 

soil deposit.  

  The dynamic SSI analysis is performed using a 47 m thick model, 

consisting in a soil domain of width equal to 70 m x 70 m. The nuclear 

power plant containment structure is modelled as a cylindrical plate 

structure of 0.305 m thickness (the outer diameter is 10.52 m) with 

two flat circular plate elements at the roof and the bottom, character-

ised by 1.07 and 0.91 m thickness, respectively. 

  The structural elements are modelled as linear visco-elastic con-

crete materials (unit weight of 25 kN/m3) with Young’s modulus 

E = 2.53104 MPa and Poisson’s ratio ν = 0.2. A structural damping 

ratio of 2.5 % is assumed and included by means of the simplified 

Rayleigh formulation ([C]=R[K]). The Rayleigh coefficient R is de-

termined selecting a control frequency of 10 Hz, a value close to the 

fixed-base fundamental frequency of the containment structure. 

  In both numerical models, the soil domain is divided into 47 layers 

of unit thickness in the vertical direction, in order to limit the dimen-

sion of the elements, according to the requirement that the element 

size must be smaller than about one/eighth of the wavelength associat-

ed with the maximum frequency component fmax of the input wave 

(equal to 10 Hz). 

  In the pre-seismic static stage, the boundary conditions are charac-

terised by total fixities at the bottom of the mesh, while horizontal 

displacements are null for the nodes on the vertical sides of the soil 

domain. In the dynamic phase, tied nodes boundary conditions are 
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adopted, achieved by introducing horizontal node-to-node anchors el-

ements, characterized by high values of axial stiffness EA (equal to 

109 kN). Switching from the static to the dynamic phase triggers a 

modification of the horizontal constraints, which induces a perturba-

tion of the stress equilibrium. In order to restore it, pressures corre-

sponding to the lithostatic distribution of horizontal effective stresses 

are introduced on the vertical sides of the mesh. All dynamic analyses 

are performed under fully undrained conditions. 

  The Generalized Newmark method is employed, with Newmark 

parameters β1 and β2 equal to 0.6 and 0.605, respectively, ensuring 

that the algorithm is unconditionally stable. 

 

5.  Numerical results 

 

5.1. Free Field ground response 

 

  The non-linear numerical results of the free-field wave propagation 

analyses are compared to the in-situ recorded motion at ground sur-

face (FA1-5) and at the depth of 17 m (DHB-17), in terms of accelera-

tion time histories and relative Fourier spectra for each horizontal 

component EW and NS (Figure 7).  

  The predicted response is comparable to the recorded one at the 

same depths along both horizontal directions, although a general ten-

dency to slightly over-predict the ground motion might be recognised. 

  A systematic overprediction of the Fourier amplitude around 0.85 

Hz can also be observed at all depths, though the frequency content of 

the signal is satisfactorily reproduced.  

  The tendency to over-estimate the seismic response should be as-

cribed to the feature of the constitutive model to provide a reduced 

amount of hysteretic damping ratio under large multi-directional strain 

levels, as those induced during the LSST7 earthquake [8]. Related to 

this behaviour is the generation of significant numerical noise, mini-

mised by adopting a low pass filter (fmax = 5 Hz), which was applied to 

all numerical output signals of the free field numerical analyses. 
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Figure 7. Seismic ground motion recorded in-situ and numerically predicted at sur-

face (FA1-5) and at depth of 17 m (DHB-17) along EW and NS horizontal compo-

nents. 

5.2. Dynamic structural response  

 

  The dynamic response of the 1/4-scale model of the containment 

structure is compared to the that recorded in-situ on the roof (F4U) 

and at the base (F4L), in terms of acceleration time histories and Fou-

rier amplitude spectra for each horizontal direction (Figure 8). 

  It appears that the computed response at the bottom of the contain-

ment structure matches fairy well that recorded both at F4LW along 

EW direction and at F4LS along NS direction. Moreover, peak accel-
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eration and zero crossings of both acceleration time histories are well 

predicted by the numerical model. The good prediction is also con-

firmed by Fourier amplitude spectra.  

 
Figure 8. Seismic structural motion recorded in-situ and numerically predicted at 

the roof (F4U) and at the basement (F4L) of the 1/4-scale model of the containment 

structure along EW and NS horizontal components. 

 

 

  The predicted dynamic response at the roof of the structure (F4UW 

EW and F4US NS) is accurately reproduced, especially in the NS hor-

izontal direction, while a slightly underestimation of the peak acceler-

ation might be identified in the EW direction.  
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For the purpose of evaluating the SSI effects on the dynamic response 

of the structure and identifying the natural SSI system frequency, the 

amplification function can be evaluated as the ratio of the horizontal 

response at the top of the structure and the horizontal free-field ground 

response, both expressed in terms of Fourier spectra. The amplifica-

tion functions obtained by predicted and recorded data with reference 

to the NS component on motion are shown in Figure 9, together with 

the corresponding function as determined for the fixed-base structure 

analysis (without considering any SSI effects). As expected, the fixed-

base natural frequency of the structure (10.66 Hz) reduces to a lower 

value (around 3.5 Hz) as a consequence of the compliance of the soil 

deposit, while the associated damping ratio increases, due to radiation 

and material dampings. The comparison of the predicted results to the 

recorded ones shows a fairly good agreement in terms of damping ra-

tio, though the natural frequency of the SSI system is slightly over-

estimated. 

 
Figure 9. Amplification function of the structural motion to the free-field ground 

motion considering the effects of the SSI interaction along NS direction. 

 

6.  Conclusions 

 

  In the present paper, a 3D FE numerical approach is proposed to 

back-analyse the free-field motion and the dynamic response of a 

small-scale structure of a nuclear power plant, recorded at Lotung 

(Taiwan) during the LSST7 event. The non-linear behaviour of soil is 

simulated by the isotropic hardening elasto-plastic model HSsmall, 

while linear visco-elasticity is assumed for the structural model. Time 

domain numerical analyses are performed under multidirectional con-

ditions of the seismic motion, applying simultaneously both compo-
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nents of the DHB-47 motion, recorded at the depth of 47 m from the 

ground surface. 

  Numerical results prove to be in good agreement with the free-field 

array’s measurements at depth and at the ground surface, both in terms 

of peak acceleration and zero crossings. Furthermore, the main fea-

tures of the dynamic structural response are also captured by the SSI 

numerical simulation.  

  The overall comparison confirms the capability of the HSsmall 

model to predict the seismic ground motion and highlights the effec-

tiveness of the proposed numerical approach to investigate complex 

problems characterised by soil-structure interaction phenomena under 

multi-directional seismic motions. 
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