1,372 research outputs found
On a computer-aided approach to the computation of Abelian integrals
An accurate method to compute enclosures of Abelian integrals is developed.
This allows for an accurate description of the phase portraits of planar
polynomial systems that are perturbations of Hamiltonian systems. As an
example, it is applied to the study of bifurcations of limit cycles arising
from a cubic perturbation of an elliptic Hamiltonian of degree four
Functional Inequalities: New Perspectives and New Applications
This book is not meant to be another compendium of select inequalities, nor
does it claim to contain the latest or the slickest ways of proving them. This
project is rather an attempt at describing how most functional inequalities are
not merely the byproduct of ingenious guess work by a few wizards among us, but
are often manifestations of certain natural mathematical structures and
physical phenomena. Our main goal here is to show how this point of view leads
to "systematic" approaches for not just proving the most basic functional
inequalities, but also for understanding and improving them, and for devising
new ones - sometimes at will, and often on demand.Comment: 17 pages; contact Nassif Ghoussoub (nassif @ math.ubc.ca) for a
pre-publication pdf cop
On positiveness of the fundamental solution for a linear autonomous differential equation with distributed delay
We present necessary and sufficient conditions for the nonoscillation of the fundamental solutions to a linear autonomous differential equation with distributed delay. The conditions are proposed in both the analytic and geometric forms
Nonoscillation, maximum principles, and exponential stability of second order delay differential equations without damping term
Nontrivial solutions of boundary value problems for second order functional differential equations
In this paper we present a theory for the existence of multiple nontrivial
solutions for a class of perturbed Hammerstein integral equations. Our
methodology, rather than to work directly in cones, is to utilize the theory of
fixed point index on affine cones. This approach is fairly general and covers a
class of nonlocal boundary value problems for functional differential
equations. Some examples are given in order to illustrate our theoretical
results.Comment: 19 pages, revised versio
- …
