1,372 research outputs found

    On a computer-aided approach to the computation of Abelian integrals

    Get PDF
    An accurate method to compute enclosures of Abelian integrals is developed. This allows for an accurate description of the phase portraits of planar polynomial systems that are perturbations of Hamiltonian systems. As an example, it is applied to the study of bifurcations of limit cycles arising from a cubic perturbation of an elliptic Hamiltonian of degree four

    Functional Inequalities: New Perspectives and New Applications

    Full text link
    This book is not meant to be another compendium of select inequalities, nor does it claim to contain the latest or the slickest ways of proving them. This project is rather an attempt at describing how most functional inequalities are not merely the byproduct of ingenious guess work by a few wizards among us, but are often manifestations of certain natural mathematical structures and physical phenomena. Our main goal here is to show how this point of view leads to "systematic" approaches for not just proving the most basic functional inequalities, but also for understanding and improving them, and for devising new ones - sometimes at will, and often on demand.Comment: 17 pages; contact Nassif Ghoussoub (nassif @ math.ubc.ca) for a pre-publication pdf cop

    On positiveness of the fundamental solution for a linear autonomous differential equation with distributed delay

    Get PDF
    We present necessary and sufficient conditions for the nonoscillation of the fundamental solutions to a linear autonomous differential equation with distributed delay. The conditions are proposed in both the analytic and geometric forms

    Nontrivial solutions of boundary value problems for second order functional differential equations

    Full text link
    In this paper we present a theory for the existence of multiple nontrivial solutions for a class of perturbed Hammerstein integral equations. Our methodology, rather than to work directly in cones, is to utilize the theory of fixed point index on affine cones. This approach is fairly general and covers a class of nonlocal boundary value problems for functional differential equations. Some examples are given in order to illustrate our theoretical results.Comment: 19 pages, revised versio
    corecore