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Abstract An accurate method to compute enclosures of Abelian integrals is devel-
oped. This allows for an accurate description of the phase portraits of planar poly-
nomial systems that are perturbations of Hamiltonian systems. As an example, it is
applied to the study of bifurcations of limit cycles arising from a cubic perturbation
of an elliptic Hamiltonian of degree four.

Keywords Abelian integrals · Limit cycles · Bifurcation theory · Planar
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1 Introduction

Nonlinear ordinary differential equations are one of the most common models used
in any application of mathematical modelling. In this paper we study families of such
equations {

ẋ = −Hy + εf (x, y)

ẏ = Hx + εg(x, y),
(1.1)

depending on a small parameter ε.
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A fundamental question about such systems is to determine the number and loca-
tion of limit cycles bifurcating from it as ε → 0.

In general, the question about the maximal number of limit cycles, and their loca-
tion, of a polynomial planar vector field is the second part of Hilbert’s 16th problem,
which is unsolved even for polynomials of degree 2. For an overview of the progress
that has been made to solve this problem we refer to [19]. Results for the degree 2
case, and a general introduction to the bifurcation theory of planar polynomial vector
fields can be found in [26]. What is known, is that any given polynomial vector field
can have only a finite number of limit cycles; this is proved in [11, 18].

A restricted version of Hilbert’s 16th problem, known as the weak, or sometimes
the tangential, or the infinitesimal, Hilbert’s 16th problem, asks for the number of
limit cycles that can bifurcate from a perturbation of a Hamiltonian system, see e.g.
[3]. The weak Hilbert’s 16th problem has been solved for the degree 2 case, see [2].

Special cases of Hamiltonian systems are those coming from a one dimensional

system, H(x, ẋ) = ẋ2

2 + h(x), which we study in the example given in Sect. 4.1.
If one, in addition, assumes that f = 0, and g(x, ẋ) = g(x)ẋ, (1.1) is known as a
Lienard equation. Such equations have been thoroughly studied, and the case where
dH , and g have degree 3 has been solved, see [6–9]. We study general g of degree 3;
the set-up of the problem is given in Sect. 4.1.

In this paper we present a rigorous, computer-aided approach to find limit cycles of
planar polynomial vector fields. A different computer-aided approach was introduced
by Malo in his PhD-thesis [20], (also described in [13, 15]) which is based on the
concept of a rotated vector field, as introduced in [5]. Our approach is completely
different: we develop a method to rigorously compute what is known as an Abelian
integral. A brief introduction to Abelian integrals is included in Sect. 2. The concept
of a computer-aided proof in analysis is based on techniques to rigorously enclose the
result of a numerical computation. A basis for such a procedure is interval analysis,
introduced by Moore in [21]. By calculating with sets rather than floating points, it
is possible to obtain guaranteed results on a computer, enabling automated proofs for
continuous problems.

We emphasize that the methods developed in this paper are neither restricted to
any specific degree of the polynomial functions f , and g, nor to the structure of the
polynomial Hamiltonian H . It can be used to compute Abelian integrals of any poly-
nomial perturbation from any family of compact level curves, ovals, of a polynomial
Hamiltonian. The method can be used as a computational tool to accurately describe
the phase portraits of a family of planar systems. In the example given in this pa-
per, however, we restrict to the case when f = 0, and dH and g have degree 3. The
method also works for integrable, but non-Hamiltonian, planar polynomial systems.
For such systems all formulae need to adjusted to include the integrating factor.

2 Abelian integrals

A classical method to prove the existence of limit cycles bifurcating from a family
of ovals of a Hamiltonian, Γh ⊂ H−1(h), depending continuously on h, is to study
Abelian integrals, or, more generally, the Melnikov function, see e.g. [3, 14]. Some
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caution, however, must be taken regarding the correspondence between limit cycles
and Abelian integrals, see e.g. [10]. Given a Hamiltonian system and a perturbation,

{
ẋ = −Hy + εf (x, y)

ẏ = Hx + εg(x, y),
(2.1)

the Abelian integral is defined as

I (h) =
∫

Γh

f (x, y) dy − g(x, y) dx. (2.2)

In this paper all systems and perturbations are polynomial. The most important prop-
erty of Abelian integrals is described by the Poincaré-Pontryagin theorem.

Theorem 2.1 (Poincaré-Pontryagin) Let P be the return map defined on some sec-
tion transversal to the ovals of H , parametrised by the values h of H , where h is
taken from some bounded interval (a, b). Let d(h) = P(h) − h be the displacement
function. Then, d(h) = ε(I (h) + εφ(h, ε)), as ε → 0, where φ(h, ε) is analytic and
uniformly bounded on a compact neighbourhood of ε = 0, h ∈ (a, b).

Proof See e.g. [3]. �

3 Computer-aided computation of Abelian integrals

3.1 Computer-aided proofs

To prove mathematical statements on a computer, we need an arithmetic which gives
guaranteed results. Many computer-aided proofs, including the results in this paper,
are based on interval analysis, e.g. [12, 16, 27]. Interval analysis yields rigorous re-
sults for continuous problems, taking both discretisation and rounding errors into
account. For a thorough introduction to interval analysis we refer to [1, 21–24].

3.2 Outline of the approach

The main idea of this paper is to develop a very accurate, validated method to enclose
the value of a general Abelian integral. Such a method enables us to sample values of
I (h). If we can find two ovals Γh1 , and Γh2 , such that

I (h1)I (h2) < 0, (3.1)

then there exists h∗ ∈ (h1, h2), such that I (h∗) = 0.
Since Pε , the return map of the perturbed vector field, is analytic and non-constant,

it has isolated fixed points. Thus, we have proved the existence of (at least) one limit
cycle bifurcating from Γh∗ .
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3.3 Computing the integrals

To compute the Abelian integral (2.2) of the form (4.6), we apply Stokes’ theorem to
get

I (h) =
∫

Dh

dw, (3.2)

where Dh denotes the interior of an oval Γh. The reason why we prefer to calculate
surface integrals, rather than contour integrals, is that we cannot represent the ovals
of H exactly. We can only find a cover of the ovals, and the area of this cover yields
the uncertainty of our calculations, automatically handled by the interval arithmetic.
If we had chosen to compute contour integrals, all of our computations would have
been subjected to those errors, since we would always integrate over an unknown
location. When calculating surface integrals, however, the effect of the uncertainty of
the location of the ovals only contributes on a very small portion of the total area of
Dh. Note that, inside Dh it is possible to integrate dω exactly, that is, there are no
truncation errors.

The actual computation of the integrals is performed in four steps; first we find
a trapping region for the interesting family of ovals, second we adaptively split this
region into three parts, one that covers the oval, one representing the inside and one
representing the outside, third we change the coordinates on the boxes covering the
oval in order to minimise the area of the cover, fourth we integrate dω on the boxes
representing the inside and the cover of the oval.

The first step is simple, since we primarily study ovals that are situated inside
of a homo- or heteroclinic orbit, exterior ones are only studied after choosing the
perturbation. A short branch-and-bound algorithm quickly finds a box enclosing the
homo- or heteroclinic orbit, and its interior; this box is our initial domain used for the
main part of the program.

In the second step—the adaptive splitting of the domain—we perform a series
of tests to determine whether a box B intersects the oval, is inside it, or outside it.
We start by evaluating the Hamiltonian on B using monotonicity and central forms;
since the Hamiltonians we study are sufficiently simple, we implement the derivatives
symbolically. By monotonicity we mean that if the partial derivatives are non-zero,
then an enclosure of H on an entire box is given by the hull of the enclosures of the
values of H at the endpoints. A central form for H on a box B , with (x, y) ∈ B is
given by:

H(x,y) + Hx(B1,B2)(B1 − x) + Hy(B1,B2)(B2 − y).

For a given box, H is evaluated three times; naively, with monotonicity, and using a
central form. Finally, all three enclosures are intersected. Three cases occur: if H < h,
then B is inside the oval, and we label B as such. If H > h then B is outside the oval
and we ignore it. Finally, if h ∈ H , then we try to perform the change of variables
as described below. If the change of variables procedure fails, and the size of B is
greater than some stopping tolerance, minsize, then we split the box B into four
parts and re-examine them separately. If the size of B is smaller than minsize, then
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Fig. 1 The labelling of boxes
intersecting an oval

Fig. 2 The allowed configurations of the intersection of an oval and a box

it is labelled fail. If the change of variables procedure works, then we label B as
on.

The third, and most complicated, part of our program is the change of variables in
the boxes that intersect the oval. Let b ∈ B be the midpoint of B . Compute

u = ∇H(b),

and choose v such that

u ⊥ v and v1 ≥ 0.

Using the labelling illustrated in Fig. 1, let right and left be the sides intersected
by the line b + tv, t ∈ R. Denote the intersection points of the straight line b + tv

with the boundary of the box by p, and q , respectively. Note that right and left
are different, since they are the intersections of the boundary of the box with the
straight line b + tv. We also remark that the possible values of right and left are
right ∈ {1,2,4} and left ∈ {2,3,4}. The allowed configurations of an intersec-
tion of the oval with a box are illustrated in Fig. 2. The restriction of H to the sides
right and left, respectively, are one-dimensional functions, and the location of
the intersections can be approximated, and their uniqueness proved, using the interval
Newton method [21] initialised from the points p, and q , respectively. If the geometry
is not as in Fig. 2, e.g. if the real intersections are on the same side, then uniqueness
will fail, and the box B is split, if it is larger than minsize, and re-examined.

Let,

accuracy= minsize/10.
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Fig. 3 Constructing a small,
local enclosure of the oval. The
geometry corresponds to the
second case in Fig. 2

Define the points pup, pdown on the right-side and the points qup, qdown on the
left-side at the distance accuracy from p and q , respectively, as illustrated in
Fig. 3 for the second case of Fig. 2.

If the following conditions hold, then the oval is inside the tube illustrated in Fig. 3,
and we can change coordinates to get a small box, which is guaranteed to contain the
segment of the oval passing through B . This small box represents the error caused by
the unknown location of the oval.

Condition 3.1

sign
(
H(pup) − h

) = sign(H(qup) − h) = − sign(H(pdown) − h)

= − sign(H(qdown) − h)

Let lup , and ldown denote the line segments between pup and qup , and pdown and
qdown, respectively. Denote by H ′ differentiation with respect to the parametrisation
of the line lup , and ldown, respectively.

Condition 3.2

0 /∈ (H(lup) − h),

and

0 /∈ (H(ldown) − h).

Let otherside1, and otherside2 be the two other sides of the box B , that is,

otherside1∪ otherside2∪ right∪ left= {1,2,3,4}.

Condition 3.3

Γh ∩ otherside1= ∅ and Γh ∩ otherside2= ∅,

Condition 3.3 is proved using the interval Newton method for the function H − h,
restricted to otherside1 and otherside2, respectively.

We enclose the segment of the oval inside of the box between two straight lines:
Condition 3.1 guarantees that the points pup , pdown, qup , and qdown are on different
sides of the oval as in Fig. 3, Condition 3.2 guarantees that the lines lup and ldown do
not intersect the oval, and Condition 3.3 guarantees that the oval does not cross the
other sides of the box. Recall that the uniqueness of p and q is proved as they are
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Fig. 4 The change of variables
splitting. The geometry
corresponds to the second case
in Fig. 2

approximated. Hence, we have proved that the segment of the oval crossing the box
has exactly two intersections with the boundary of the box, and that it is confined to
the region between lup and ldown.

If (3.1), (3.2), and (3.3), hold, then we set accuracy=accuracy/2, re-
calculate pup , pdown, qup, and qdown, and try to verify (3.1), (3.2), and (3.3). This
procedure is iterated until (3.1), or (3.2) do not hold. Finally, we label B as on.

The fourth and final part of our integration algorithm, is the actual integration.
The integration is done separately for the boxes that are labelled, inside, fail,
and on.

If B is inside we compute

∫
B

xiyj dx ∧ dy =
(

sup(B1)
i+1

i + 1
− inf(B1)

i+1

i + 1

)

×
(

sup(B2)
j+1

j + 1
− inf(B2)

j+1

j + 1

)
. (3.3)

If B is labelled fail, we know that B might intersect the oval, that is, we have nei-
ther been able to prove intersection, nor non-intersection. Therefore, we must include
any possible result; the integral over B is calculated as the interval hull of 0 and the
largest, and smallest, respectively, result of (3.3) calculated on a subbox B̃ ⊂ B . Note
that for boxes which intersect the x-axis or y-axis, this implies that the minus sign
between the terms in (3.3) is replaced by a plus sign. E.g., if a box, B , is such that
0 ∈ B1 and i = 2k − 1, then (3.3) is replaced by:

∫
B

x2k−1yj dx ∧ dy = ±
(

sup(B1)
2k

2k
+ inf(B1)

2k

2k

)

×
(

sup(B2)
j+1

j + 1
− inf(B2)

j+1

j + 1

)
. (3.4)

Boxes labelled fail cause large over-estimations. Fortunately such boxes are
rare, typically less than 5% of the on-boxes, see Sect. 4. If minsize is taken suffi-
ciently small, the effect of the fail-boxes is negligible.

The boxes that are labelled on, are split into five parts, as illustrated in Fig. 4.
By construction, none of the triangles, Tl, Tu, or boxes Bl,Bu in the splitting of B

intersect the oval, thus it suffices to evaluate H in one point of each, and hence they
can all be labelled as inside or outside. The boxes Bl,Bu are then treated as
above, that is, if they are labelled inside they are integrated according to (3.3),
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and if they are labelled outside they are neglected. A triangle labelled outside
is also neglected, the integrals on triangles labelled inside are enclosed by the
formula ∫

T

xiyj dx ∧ dy ∈ �T i
1 �T

j

2 |T |, (3.5)

where �T is the box hull of T , and |T | is the area of T . This gives a reasonably
narrow enclosure of the integral, since the width of �T is typically small. The par-
allelepiped, P , which covers the segment of the oval, remains to be studied. When
we integrate over P , the same problem as in the fail case occurs; we do not know
how much of the parallelepiped to include. Therefore, we have to take the hull of all
possible outcomes. Hence, the integrals are computed as∫

P

xiyj dx ∧ dy ∈ Hull
(

0,�P i
1�P

j

2 |P |
)

, (3.6)

where �P is the box hull of P and |P | is the area of P .
The value of the Abelian integral is enclosed by summing over all the computed

integrals that are labelled as either inside, fail, or on.

I (h) ∈
∑

B∈inside
(3.3) +

∑
T ∈inside

(3.5) +
∑

B∈fail
Hull(0, (3.3)) +

∑
P∈on

(3.6) (3.7)

Thus, we have proved the following:

Theorem 3.4 If Conditions 3.1, 3.2, and 3.3 hold, then the value of the Abelian
integral

Iij (h) =
∫

Dh

xiyj dx ∧ dy,

is enclosed by (3.7).

The algorithm is given as Algorithm 1.

4 Computational results

In this section we apply the methods developed in Sect. 3.3 to an elliptical Hamil-
tonian of degree four, described in Sect. 4.1. The main idea is to integrate monomial
forms at some points, and then to specify the coefficients of the perturbation ω such
that I (h) is zero at the sampled points. Therefore, let

Iij (h) =
∫

Dh

xiyj dx ∧ dy. (4.1)

We sample at some number of h-values, uniformly distributed between the saddle
loops and the singularity. From these calculations we deduce candidate coefficients.

Given some candidate coefficients of the form ω, we calculate the Iij (h), at in-
termediate ovals. If the linear combination of the Iij (h) has validated sign changes
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Algorithm 1: Implementation of the Algorithm
Data: H , B , h, i, j , minsize, accuracy

Result: Iij (h)

Iij (h) = 0;1

workStack+=B;2
while notEmtpy(workStack) do3

B=Pop(workStack);4
if H(B) < h then5

Iij (h)+ =
(

sup(B1)i+1

i+1 − inf(B1)i+1

i+1

)
×

(
sup(B2)j+1

j+1 − inf(B2)j+1

j+1

)
;

6

else7
if h ∈ H(B) then8

if Condition 3.1 & Condition 3.2 & Condition 3.3 then9
Iij (h)+ =10 (

sup(Bl∨u
1 )i+1

i+1 − inf(Bl∨u
1 )i+1

i+1

)
×

(
sup(Bl∨u

2 )j+1

j+1 − inf(Bl∨u
2 )j+1

j+1

)
+

�(T l∨u
1 )i�(T l∨u

2 )j |T l∨u| + Hull
(

0,�P i
1�P

j
2 |P |

)
else11

if diam(B)<minsize then12
if 0 ∈ B1 & i odd then13

xInt =14

Hull

(
−

(
sup(B1)i+1

i+1 + inf(B1)i+1

i+1

)
,

(
sup(B1)i+1

i+1 + inf(B1)i+1

i+1

))
;

else15

xInt =
(

sup(B1)i+1

i+1 − inf(B1)i+1

i+1

)
;

16

end17
if 0 ∈ B2 & j odd then18

yInt =19

Hull

(
−

(
sup(B2)j+1

j+1 + inf(B2)j+1

j+1

)
,

(
sup(B2)j+1

j+1 + inf(B2)j+1

j+1

))
;

else20

yInt =
(

sup(B2)j+1

j+1 − inf(B2)j+1

j+1

)
;

21

end22
Iij (h)+ = Hull (0, xInt × yInt);23

else24
splitAndStore(B,workStack);25

end26

end27

end28

end29

end30

between the sample points we are done: it has been proved that the corresponding
perturbation yields bifurcations with the given number of limit cycles as ε → 0.

All computations were performed on a Intel Xeon 2.0 Ghz, 64 bit processor with
7970 Mb of RAM. The program was compiled with gcc, version 3.4.6. The software
for interval arithmetic was provided by the C-XSC package, version 2.1.1, see [4, 17].
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Fig. 5 The elliptic Hamiltonian
of degree 4 with a figure eight
loop, studied in Sect. 4.1

4.1 Example—bifurcations from a figure eight loop

We study the elliptic Hamiltonian of degree 4 with a figure eight loop, given by

H = y2

2
+ x4

4
+ 1 − λ

3
x3 − λ

2
x2, (4.2)

where λ ∈ (0,1), see [9]. The corresponding differential system has two centres, at
H = − 1

12 (2λ + 1), and H = − 1
12λ3(λ + 2), that are surrounded by a figure eight

loop, located at H = 0, see Fig. 5. As λ grows the right loop grows; λ = 1 is a sym-
metric figure eight loop. We choose to study λ = 0.95; a motivation why we want
λ large is as follows. We want to construct a nontrivial example with as many limit
cycles as possible. In the symmetric case the two branches are identical. Therefore,
heuristically, it is a reasonable that for λ close to one it should be possible to choose
coefficients so that the two branches oscillate together. After some experiments we
decide to put λ = 0.95, since it is relatively far away from 1 to be significantly differ-
ent, but still sufficiently close to 1 for the domains of the two branches to have a large
overlap. This allows us to locate extra limit cycles, compared to what is possible by
simply solving the linear system as described below.

The Hamiltonian (4.2) corresponds to the differential system,{
ẋ = −Hy = −y

ẏ = Hx = x3 + (1 − λ)x2 − λx.
(4.3)

We are interested in limit cycles bifurcating from the periodic solutions of (4.3),
corresponding to integral curves of (4.2). The closed level-curves of (4.2) are called
ovals. In a series of papers [6–9], Dumortier and Li study cubic perturbations of
elliptic Hamiltonians corresponding to Lienard equations. That is,

ẍ + ε(α + βx + γ x2)ẋ + ax3 + bx2 + cx = 0. (4.4)

For the elliptic Hamiltonians of degree four with compact ovals, there are five
different classes of phase portraits, see e.g. [3]. They are, the truncated pendulum,
the saddle loop. the global centre, the cuspidal loop, and the figure-eight loop.
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Compared to the Lienard case, we add a fourth term, δ
y3

3 , to the perturbation,
and explore what kind of bifurcations we can prove to exist. We study the perturbed
system, {

ẋ = −y

ẏ = x3 + (1 − λ)x2 − λx + ε((α + βx + γ x2)y + δ
y3

3 ).
(4.5)

The 1-form associated with this perturbation is

ω = −
(

(α + βx + γ x2)y + δ
y3

3

)
dx. (4.6)

For computational efficiency we primarily study its exterior derivative,

dω =
(
(α + βx + γ x2) + δy2

)
sdx ∧ dy. (4.7)

In [25] Petrov proves that when restricting to one family of ovals, surrounding
one of the two centres, the space of Abelian integrals has dimension 4, and that the
space has the Chebyshev property, that is, the number of zeros of a function in this
space is less than the dimension of the space. He also proves that this bound is sharp.
To construct an example with more than three limit cycles surrounding either of the
two centres, we can therefore not simply use the Chebyshev property of the space of
Abelian integrals.

Our heuristic argument to guess parameters is the following: we start by inte-
grating at 100 uniformly distributed ovals, in each eye of the loop. We do this with
moderate accuracy, which gives a fast and sufficiently precise result. Since we have
chosen to study a figure eight loop that is not far from being symmetric, it is reason-
able to assume that the two branches behave similarly, which makes it probable that
we should be able to determine coefficients so that each branch has two zeros. To
determine such zeros, we solve the following linear system:⎡
⎢⎢⎢⎢⎣

I l
00(−0.0362) I l

10(−0.0362) I l
20(−0.0362) I l

02(−0.0362)

I l
00(−0.1208) I l

10(−0.1208) I l
20(−0.1208) I l

02(−0.1208)

I l
00(−0.1812) I l

10(−0.1812) I l
20(−0.1812) I l

02(−0.1812)

I r
00(−0.1054) I r

10(−0.1054) I r
20(−0.1054) I r

02(−0.1054)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

α

β

γ

δ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
−1
1

−1

⎤
⎥⎥⎦

(4.8)
where I l

ij (h), and I r
ij (h), denote the monomial Abelian integrals calculated on the

left and right ovals, respectively.
This computation gives the approximate solution α = 438.4905, β = −25.2469,

γ = −452.7899, and δ = −741.0341, which we use as our perturbation. The graph
of the resulting function is given in Fig. 6, which appears to have 4 zeros, illustrated
in Fig. 7. This, of course, has to be proved.

To prove that the perturbation constructed above has 4 zeros, we proceed as in the
previous examples, and compute enclosures of the Abelian integral at intermediate
ovals. On the left branch we calculate I (−0.0121), I (−0.0846), and I (−0.1933),
and on the right branch we compute I (−0.0105), I (−0.0738), and I (−0.1686). The
result is given in Tables 1, and 2.
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Fig. 6 The two branches of the
Abelian Integral for the figure
eight loop

Fig. 7 The limit cycles from
Example 4.1; unstable limit
cycles are dashed. Note that we
only prove the existence of the
limit cycles, their locations as
drawn in the figure are the
locations of the ovals they
bifurcate from

Table 1 The computed enclosures for the left branch of the figure eight loop

h I l
00 I l

10 I l
20 I l

02

−0.0121 [1.206,1.207] [−1.034,−1.033] [0.9945,0.9951] [0.1290,0.1293]
−0.0846 [0.7661,0.7665] [−0.7073,−0.7068] [0.6902,0.6907] [0.05829,0.05839]
−0.1933 [0.2219,0.2222] [−0.2178,−0.2175] [0.2160,0.2164] [0.00532,0.00534]

Table 2 The computed enclosures for the right branch of the figure eight loop

h Ir
00 I r

10 I r
20 I r

02

−0.0105 [1.077,1.078] [0.8773,0.8778] [0.8033,0.8039] [0.1006,0.1008]
−0.0738 [0.6846,0.6851] [0.6002,0.6006] [0.5573,0.5577] [0.04545,0.04553]
−0.1686 [0.1984,0.1987] [0.1848,0.1850] [0.1744,0.1747] [0.004154,0.004164]

Finally, we compute I l(h), and I r (h) at the intermediate ovals,

I l(−0.0121) = [+8.698,+9.290],
I l(−0.0846) = [−2.204,−1.780],
I l(−0.1933) = [+0.9121,+1.119],

(4.9)
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Fig. 8 The perturbed figure
eight loop, here with ε = 0.001,
illustrating the 5 limit cycles
found in Sect. 4.1

Table 3 The computed enclosures for the outside of the figure eight loop

h Io
00 Io

10 Io
20 Io

02

0.09 [3.576,3.587] [−0.1843,−0.1709] [2.560,2.575] [0.5307,0.5376]
0.11 [3.776,3.786] [−0.1862,−0.1740] [2.708,2.724] [0.6044,0.6109]

I r (−0.0105) = [+11.56,+12.10],
I r (−0.0738) = [−1.181,−0.7959],
I r (−0.1686) = [+0.2095,+0.3847].

Hence, the system with the given perturbation has four limit cycles, one attracting
and one repelling inside each loop, see Figs. 7 and 8. The run-time of the program
was, for the left (right) branch, 82 (78) seconds, a total of 1182 (1166) boxes were
used to cover the 3 ovals, 82 (56) of these belong to the fail class.

To prove that the unstable separatrices of the saddle are attracted to a limit cycle
enclosing the figure eight loop, as indicated in Fig. 8, we first calculate I o(h), the
outer Abelian integral, for some h > 0 values with low accuracy to find an indication
of a sign change. It appears that a limit cycle bifurcates from an oval close to H = 0.1.
Therefore, we compute I o(0.09), and I o(0.11), the result is given in Table 3,

I o(0.09) = [+8.715,+24.83],
I o(0.11) = [−25.37,−9.821]. (4.10)

These calculations verify that the perturbed system has an attracting limit cycle
bifurcating from an oval outside the figure eight loop. The run-time of the program
was 39 seconds, a total of 496 boxes were used to cover the 2 ovals, 52 of these
belong to the fail class.

To illustrate how the algorithm partitions the original trapping-region of an oval
into a sufficiently fine cover of it, a cover of an outer oval of the figure eight loop is
given in Fig. 9. Note that the cover is highly non-uniform.

5 Conclusions

We have presented a method to rigorously calculate Abelian integrals. The method
can be applied to study any polynomial perturbation of a planar polynomial integrable
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Fig. 9 A cover of the outer oval
with H = 10−6. The boxes
labeled fail are plotted as
filled black boxes, the boxes that
are labeled on are plotted as
white boxes with a black frame

vector field. As an application, we have applied the method to an elliptic Hamiltonian
of degree 4.

The method can be used in several ways: either one can use it to verify that a
specific perturbation guessed by some other method indeed has a certain number of
zeros, or one can use it as in Sect. 4.1 to sample and plot the monomial Abelian
integrals. In the latter case, if a good choice of parameters can be made from the
approximate knowledge of the monomial Abelian integrals, then one can re-use the
program to verify that guess, as is done in Sect. 4.1. This means that one can use the
method for experimental, but rigorous, studies of the possible configurations of limit
cycles bifurcating from a given planar polynomial Hamiltonian system. We believe
that enabling such rigorous studies can be very useful when studying a given sys-
tem, since the phenomena are typically subtle and hard to detect using floating point
computations. Without the verification step it is hard to decide from the computations
what is a bifurcation, and what is just numerical noise.

A major challenge is to device a method which can be used to guess what per-
turbations to investigate. One such method that appears in the literature is that of a
detection function, as used in e.g. [28]. Another problem, which we have ignored in
this paper, is that typically when one has a Hamiltonian depending on parameters,
the maximal number of limit cycles that can bifurcate from one member of this fam-
ily, will only appear for some special values of the parameters. It would therefore be
desirable to develop conditions indicating how to choose one candidate system from
a family. In Sect. 4.1 we give a completely heuristic argument why we want to have
λ large. Another method to choose some of the parameters in the Hamiltonian is to
restrict the study to systems with maximal number of centres, i.e., of the form{

ẋ = −y(y2 − b1)(y
2 − b2) · · · (y2 − bk)

ẏ = x(x2 − a1)(x
2 − a2) · · · (x2 − ak)

(5.1)

where the ai ’s and bi ’s are increasing sequences of positive numbers. Different
choices of ai and bi introduce different symmetries into the system, which can be
used to find perturbed systems with a large number of limit cycles.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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