99,364 research outputs found
Multifractal characterisation of length sequences of coding and noncoding segments in a complete genome
The coding and noncoding length sequences constructed from a complete genome
are characterised by multifractal analysis. The dimension spectrum and
its derivative, the 'analogous' specific heat , are calculated for the
coding and noncoding length sequences of bacteria, where is the moment
order of the partition sum of the sequences. From the shape of the
and curves, it is seen that there exists a clear difference between the
coding/noncoding length sequences of all organisms considered and a completely
random sequence. The complexity of noncoding length sequences is higher than
that of coding length sequences for bacteria. Almost all curves for
coding length sequences are flat, so their multifractality is small whereas
almost all curves for noncoding length sequences are multifractal-like.
We propose to characterise the bacteria according to the types of the
curves of their noncoding length sequences.Comment: 15 pages with 5 figures, Latex, Accepted for publication in Physica
Time series model based on global structure of complete genome
A time series model based on the global structure of the complete genome is
proposed. Three kinds of length sequences of the complete genome are
considered. The correlation dimensions and Hurst exponents of the length
sequences are calculated. Using these two exponents, some interesting results
related to the problem of classification and evolution relationship of bacteria
are obtained.Comment: 11 pages with 3 figures and 2 tables, Chaos, Solitons and Fractals
(Accepted for publications
Profiling of RNAs from Human Islet-Derived Exosomes in a Model of Type 1 Diabetes
Type 1 diabetes (T1D) is characterized by the immune-mediated destruction of insulin-producing islet β cells. Biomarkers capable of identifying T1D risk and dissecting disease-related heterogeneity represent an unmet clinical need. Toward the goal of informing T1D biomarker strategies, we profiled coding and noncoding RNAs in human islet-derived exosomes and identified RNAs that were differentially expressed under proinflammatory cytokine stress conditions. Human pancreatic islets were obtained from cadaveric donors and treated with/without IL-1β and IFN-γ. Total RNA and small RNA sequencing were performed from islet-derived exosomes to identify mRNAs, long noncoding RNAs, and small noncoding RNAs. RNAs with a fold change ≥1.3 and a p-value <0.05 were considered as differentially expressed. mRNAs and miRNAs represented the most abundant long and small RNA species, respectively. Each of the RNA species showed altered expression patterns with cytokine treatment, and differentially expressed RNAs were predicted to be involved in insulin secretion, calcium signaling, necrosis, and apoptosis. Taken together, our data identify RNAs that are dysregulated under cytokine stress in human islet-derived exosomes, providing a comprehensive catalog of protein coding and noncoding RNAs that may serve as potential circulating biomarkers in T1D
A global transcriptional network connecting noncoding mutations to changes in tumor gene expression.
Although cancer genomes are replete with noncoding mutations, the effects of these mutations remain poorly characterized. Here we perform an integrative analysis of 930 tumor whole genomes and matched transcriptomes, identifying a network of 193 noncoding loci in which mutations disrupt target gene expression. These 'somatic eQTLs' (expression quantitative trait loci) are frequently mutated in specific cancer tissues, and the majority can be validated in an independent cohort of 3,382 tumors. Among these, we find that the effects of noncoding mutations on DAAM1, MTG2 and HYI transcription are recapitulated in multiple cancer cell lines and that increasing DAAM1 expression leads to invasive cell migration. Collectively, the noncoding loci converge on a set of core pathways, permitting a classification of tumors into pathway-based subtypes. The somatic eQTL network is disrupted in 88% of tumors, suggesting widespread impact of noncoding mutations in cancer
A Note on Zipf's Law, Natural Languages, and Noncoding DNA regions
In Phys. Rev. Letters (73:2, 5 Dec. 94), Mantegna et al. conclude on the
basis of Zipf rank frequency data that noncoding DNA sequence regions are more
like natural languages than coding regions. We argue on the contrary that an
empirical fit to Zipf's ``law'' cannot be used as a criterion for similarity to
natural languages. Although DNA is a presumably an ``organized system of
signs'' in Mandelbrot's (1961) sense, an observation of statistical features of
the sort presented in the Mantegna et al. paper does not shed light on the
similarity between DNA's ``grammar'' and natural language grammars, just as the
observation of exact Zipf-like behavior cannot distinguish between the
underlying processes of tossing an sided die or a finite-state branching
process.Comment: compressed uuencoded postscript file: 14 page
T-ALL and thymocytes : a message of noncoding RNAs
In the last decade, the role for noncoding RNAs in disease was clearly established, starting with microRNAs and later expanded towards long noncoding RNAs. This was also the case for T cell acute lymphoblastic leukemia, which is a malignant blood disorder arising from oncogenic events during normal T cell development in the thymus. By studying the transcriptomic profile of protein-coding genes, several oncogenic events leading to T cell acute lymphoblastic leukemia (T-ALL) could be identified. In recent years, it became apparent that several of these oncogenes function via microRNAs and long noncoding RNAs. In this review, we give a detailed overview of the studies that describe the noncoding RNAome in T-ALL oncogenesis and normal T cell development
Recommended from our members
The how and why of lncRNA function: An innate immune perspective.
Next-generation sequencing has provided a more complete picture of the composition of the human transcriptome indicating that much of the "blueprint" is a vastness of poorly understood non-protein-coding transcripts. This includes a newly identified class of genes called long noncoding RNAs (lncRNAs). The lack of sequence conservation for lncRNAs across species meant that their biological importance was initially met with some skepticism. LncRNAs mediate their functions through interactions with proteins, RNA, DNA, or a combination of these. Their functions can often be dictated by their localization, sequence, and/or secondary structure. Here we provide a review of the approaches typically adopted to study the complexity of these genes with an emphasis on recent discoveries within the innate immune field. Finally, we discuss the challenges, as well as the emergence of new technologies that will continue to move this field forward and provide greater insight into the biological importance of this class of genes. This article is part of a Special Issue entitled: ncRNA in control of gene expression edited by Kotb Abdelmohsen
The fate of Arabidopsis thaliana homeologous CNSs and their motifs in the Paleohexaploid Brassica rapa.
Following polyploidy, duplicate genes are often deleted, and if they are not, then duplicate regulatory regions are sometimes lost. By what mechanism is this loss and what is the chance that such a loss removes function? To explore these questions, we followed individual Arabidopsis thaliana-A. thaliana conserved noncoding sequences (CNSs) into the Brassica ancestor, through a paleohexaploidy and into Brassica rapa. Thus, a single Brassicaceae CNS has six potential orthologous positions in B. rapa; a single Arabidopsis CNS has three potential homeologous positions. We reasoned that a CNS, if present on a singlet Brassica gene, would be unlikely to lose function compared with a more redundant CNS, and this is the case. Redundant CNSs go nondetectable often. Using this logic, each mechanism of CNS loss was assigned a metric of functionality. By definition, proved deletions do not function as sequence. Our results indicated that CNSs that go nondetectable by base substitution or large insertion are almost certainly still functional (redundancy does not matter much to their detectability frequency), whereas those lost by inferred deletion or indels are approximately 75% likely to be nonfunctional. Overall, an average nondetectable, once-redundant CNS more than 30 bp in length has a 72% chance of being nonfunctional, and that makes sense because 97% of them sort to a molecular mechanism with deletion in its description, but base substitutions do cause loss. Similarly, proved-functional G-boxes go undetectable by deletion 82% of the time. Fractionation mutagenesis is a procedure that uses polyploidy as a mutagenic agent to genetically alter RNA expression profiles, and then to construct testable hypotheses as to the function of the lost regulatory site. We show fractionation mutagenesis to be a deletion machine in the Brassica lineage
RNA regulation of lipotoxicity and metabolic stress
Noncoding RNAs are an emerging class of nonpeptide regulators of metabolism. Metabolic diseases and the altered metabolic environment induce marked changes in levels of microRNAs and long noncoding RNAs. Furthermore, recent studies indicate that a growing number of microRNAs and long noncoding RNAs serve as critical mediators of adaptive and maladaptive responses through their effects on gene expression. The metabolic environment also has a profound impact on the functions of classes of noncoding RNAs that have been thought primarily to subserve housekeeping functions in cells—ribosomal RNAs, transfer RNAs, and small nucleolar RNAs. Evidence is accumulating that these RNAs are also components of an integrated cellular response to the metabolic milieu. This Perspective discusses the different classes of noncoding RNAs and their contributions to the pathogenesis of metabolic stress
- …
