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George Caputa and Jean E. Schaffer

RNA Regulation of Lipotoxicity and
Metabolic Stress
Diabetes 2016;65:1816–1823 | DOI: 10.2337/db16-0147

Noncoding RNAs are an emerging class of nonpeptide
regulators of metabolism. Metabolic diseases and the
altered metabolic environment induce marked changes
in levels of microRNAs and long noncoding RNAs. Fur-
thermore, recent studies indicate that a growing number
of microRNAs and long noncoding RNAs serve as critical
mediators of adaptive and maladaptive responses through
their effects on gene expression. The metabolic envi-
ronment also has a profound impact on the functions of
classes of noncoding RNAs that have been thought primar-
ily to subserve housekeeping functions in cells—ribosomal
RNAs, transfer RNAs, and small nucleolar RNAs. Evidence
is accumulating that these RNAs are also components of
an integrated cellular response to the metabolic milieu. This
Perspective discusses the different classes of noncoding
RNAs and their contributions to the pathogenesis of meta-
bolic stress.

Much of the morbidity and mortality in diabetes relates to
complications that result from the underlying metabolic
alterations in this disease. In type 2 diabetes, hyperlipid-
emia, as well as hyperglycemia, have been implicated as
triggers for complications that impact the heart, liver,
kidney, and the endothelium of blood vessels of many
tissues including the eye (1–4). Furthermore, these met-
abolic stressors have been implicated in the decline in
b-cell function that contributes to progressive insulin in-
sufficiency and eventual requirement for insulin therapy
in type 2 diabetes (5).

High levels of circulating glucose, fatty acids, and
triglycerides result in delivery of quantities of substrates
that exceed the ability of tissues to safely metabolize
or store these molecules. Glucotoxicity, lipotoxicity, and
glucolipotoxicity engage endoplasmic reticulum stress and
oxidative stress pathways that cause organ dysfunction and,
in some cases, cell death (6). Protein-mediated signaling

clearly plays important roles in these metabolic stress re-
sponses, and metabolic stress–induced changes in gene
expression have been described in many cell types and
physiological contexts. With the advent of high-throughput
RNA sequencing technologies over the past 15 years,
there is a growing appreciation of the functional role of
noncoding RNAs in physiological and pathological process-
es. This review will focus on noncoding RNAs that play key
roles in directing cell and tissue responses to lipotoxicity
and glucotoxicity.

microRNA

Since their initial discovery in the mid-1990s, microRNAs
(miRNAs) have come to be recognized as a ubiquitous class
of noncoding RNA modulators of mammalian physiological
responses that act through posttranscriptional regulation
of gene expression. Primary miRNA molecules are generated
by RNA polymerase II from independent transcriptional
units or from mirtrons embedded within the introns of
protein coding genes, and they are processed by the
enzymes Drosha and Dicer to generate miRNAs of 19–23
nucleotides in length (7). These mature miRNAs are loaded
onto Argonaute proteins to form the functional RNA-induced
silencing complex that targets complementary sites within
mRNAs, leading to degradation of the mRNA in most cases
or inhibition of translation in rare instances (8).

Observations that levels of some miRNAs are regulated
by lipotoxic and glucotoxic conditions have implicated
these noncoding RNAs in the pathogenesis of diabetes
complications. Microarray analyses have revealed that in
the MIN6 pancreatic b-cell line, more than half of the 108
detectable miRNAs are glucose regulated (9), whereas rel-
atively fewer miRNAs are regulated by prolonged exposure
to lipids (10). However, only a subset of these glucose- and
lipid-regulated miRNAs have been demonstrated to function
in the pathophysiological response to metabolic stress (Fig. 1
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and Table 1). Abundance of miRNAs can be regulated at the
level of transcription, processing, and/or degradation. While
the molecular details of transcriptional and processing steps
of many miRNAs are well understood, relatively less is

known about how these small RNAs are degraded. For
most metabolic stress–regulated miRNAs, future studies
will be required to determine the mechanisms that lead to
altered abundance of the miRNA.

Figure 1—Noncoding RNA mediators of metabolic stress that impact gene expression. Hyperglycemic and hyperlipidemic conditions
induce changes in miRNAs and lncRNAs that serve maladaptive (A) and adaptive (B) cellular roles in the response to metabolic stress.
Broad classes of downstream effectors are highlighted. Specific noncoding RNAs described in the text are shown in brackets.

Table 1—miRNAs that function in metabolic stress

miRNA Context Target Function Change in metabolic stress

Maladaptive
miR-34a MIN6 b-cells Bcl2, VAMP2 Promotes lipotoxic cell death Induced by palm
miR-146 MIN6 b-cells Promotes lipotoxic cell death Induced by palm
miR-195 Cardiomyocytes Bcl2, sirtuin1 Promotes lipotoxic cell death Induced by palm
miR-296 Hepatocytes PUMA Inhibits apoptosis Decreased by palm
miR-615-3p Hepatocytes CHOP Inhibits apoptosis Decreased by palm
miR-24 Islets,

MIN6 b-cells
Hnf1a, Neurod1 Inhibits proliferation,

insulin secretion
Induced by palm and HFD

miR-375 Islets, b-cells Pdpk1 Dampens phosphatidylinositol
3-kinase signaling

Induced by high glucose

miR-30a-5p Islets, b-cells Beta2/NeuroD Decreases transcription
of Ins, Sur1

Induced by high glucose

miR-214 Monocytes Pten Prolongs inflammation Induced by AGEs
miR-21 Renal mesangial

cells
Pten Increases AKT and TORC1

activation
Induced by high glucose

miR-9a-3p Vascular SMCs Sur2b Compromises KATP channel
function

Induced by methylglyoxal

miR-29c Renal ECs,
podocytes

Spry1 Increases extracellular matrix,
apoptosis

Induced by hyperglycemia, DM

miR-503 ECs Cdc25A Inhibits proliferation, migration Induced by glucose, DM

Adaptive
miR-195 Retinal ECs Sirt1 Limits senescence Induced by high glucose
miR-93 Podocytes VEGF Limits microvascular complications Decreased by hyperglycemia
miR-124a INS-1 b-cells FOXA2 Decreases islet amyloid polypeptide Decreased by hyperglycemia
miR-200a-3p Renal mesangial cells TGFb Decreases fibrosis Decreased by high glucose
miR-200b Retinal ECs VEGF Decreases vascular permeability Decreased in DM

DM, diabetes; ECs, endothelial cells; HFD, high-fat diet; palm, palmitate; SMCs, smooth muscle cells.
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Several miRNAs contribute to cell death after pro-
longed exposure of cells in culture to media containing
pathophysiologically high concentrations of the saturated
fatty acid palmitate. In MIN6 cells, palmitate induces
expression of miR-34a and miR-146 (10). Overexpression
of either miRNA enhances, whereas knockdown inhibits,
palmitate-induced apoptosis of MIN6 cells. Targets of miR-
34a in these cells include Bcl2, an important antiapoptotic
regulator, as well as VAMP2, which plays a critical role in
exocytosis of insulin granules, providing a mechanistic un-
derstanding of the contribution of miR-34a to cell dysfunc-
tion and cell death. In cardiomyocytes, Bcl2 and sirtuin 1
are targeted by palmitate-induced miR-195, resulting in
changes in gene expression that promote apoptosis (11).
On the other hand, lipotoxic conditions also decrease ex-
pression of miRNAs that target proapoptotic proteins and
can thus disrupt constitutive prosurvival functions. Incu-
bation of hepatocytes with palmitate decreases generation
of miR-296, which leads to increased expression of its
proapoptotic target p53 upregulated modulator of apopto-
sis (PUMA), whereas forced overexpression of this miR-
296 decreases PUMA expression and protects against
lipoapoptosis (12). Similarly, decreases in miR-615-3p
under lipotoxic conditions have been linked to increases
in expression of CHOP, a proapoptotic transcription fac-
tor that is induced during lipoapoptosis (13,14). Beyond
the inverse relationship between miRNA abundance and
putative target expression for each of these palmitate-
regulated miRNAs, experiments using reporter con-
structs have identified functional binding sites in the
39-untranslated region of the putative targets. Nonethe-
less, no studies to date have captured these miRNAs with
their targets within the RNA-induced silencing complex.

Lipid-induced miRNAs also drive dysfunction of some
cell types under lipotoxic conditions. miR-24 is highly
upregulated in islets isolated from db/db mice and from
wild-type mice fed a high-fat diet (15). Furthermore, in
MIN6 cells, palmitate induces miR-24, and overexpression
of miR-24 inhibits MIN6 cell proliferation, an effect that
is mediated through miR-24 downregulation of Hnf1a and
Neurod1. Overexpression of miR-24 also decreases glucose-
and potassium-stimulated insulin secretion. By contrast,
knockdown of miR-24 in islets from HFD mice restores
normal glucose-stimulated insulin secretion. Thus, a single
miRNA induced during lipid stress can have broad impact
on normal tissue function, presumably through its effects
on multiple RNA targets.

High glucose and its resulting metabolites, such as advanced
glycation end products (AGEs) and methylglyoxal, also induce
expression of miRNAs that contribute to cellular dysfunction.
In primary islets and b-cell lines, high glucose increases ex-
pression of miR-375 and miR-30a-5p, which contribute to
impairment of glucose-stimulated insulin secretion by target-
ing 39phosphoinositide-dependent protein kinase-1 (Pdpk1)
and Beta2/NeuroD, respectively (16,17). Decreases in
PDPK1 expression dampen phosphatidylinositol 3-kinase
signaling, whereas BETA2/NEUROD is a transcription

factor that regulates transcription of the insulin gene and
the SUR1 subunit of the KATP channel. Interestingly, high-
level expression of miR-375 has been found in postmortem
studies of pancreases from humans with type 2 diabetes
(18). Several other miRNAs upregulated by glucose tar-
get the phosphatase and tensin homolog (Pten) mRNA—
in monocytes treated with AGE, miR-214 downregulates
PTEN expression and prolongs inflammation (19), and in
glucose-treated renal mesangial cells, miR-21–mediated
decreases in PTEN expression lead to increased AKT
and TORC1 activation (20). Treatment of vascular
smooth muscle cells with the reactive carbonyl species
methylglyoxal, a by-product of persistent hyperglycemia,
induces miR-9a-3p, which targets the mRNA encoding
the sulfonylurea receptor 2B (SUR2B) subunit of the vascu-
lar KATP channel, thereby compromising KATP channel
function (21). Overall, these glucose-induced miRNAs
are expressed in a context that is consistent with a
potential role in progressive cellular dysfunction.

On the other hand, many miRNAs serve an adaptive
role in the face of metabolic stress. Some, like miR-195,
are induced by treatment of cultured endothelial cells
with high glucose and are also found to be upregulated in
the diabetic retina (22). Experiments using an miR-195
antagomir demonstrate that this miRNA functions to
limit hyperglycemia-induced senescence of cultured endo-
thelial cells though downregulation of Sirt1. By interfering
with the expression of this key mediator of glucose-
induced damage to microvessels, miR-195 may protect
against retinal complications of hyperglycemia. There
are also miRNAs that serve a protective role under ho-
meostatic conditions but whose expression is diminished
by hyperglycemia. miR-93 targets vascular endothelial
growth factor (VEGF), high levels of which have been
implicated in diabetes microvascular complications (23).
Hyperglycemia downregulates miR-93 in both the diabetic
kidney and in cultured podocytes, and in podocytes tran-
scriptional downregulation of miRNA-93 is associated
with excessive secretion of VEGF. miR-124a is another
example of an miRNA that physiologically serves to main-
tain homeostasis in cultured INS-1 b-cells by targeting
the transcription factor FOXA2, the net effect of which
decreases expression of islet amyloid polypeptide (24).
Levels of miR-124a are downregulated by glucose-induced
thioredoxin-interacting protein (TXNIP). As deposits of
islet amyloid polypeptide are associated with islet degen-
eration in type 2 diabetes, this observation implicates
glucose-induced downregulation of miR-124a in progres-
sive loss of functional b-cells.

Although levels of many miRNAs are altered in the
serum and in tissues affected by complications in human
subjects with type 1 or type 2 diabetes (25,26), causal rela-
tionships among altered miRNA expression, metabolic sub-
strate excess, and pathogenesis of complications are difficult
to establish in humans. In contrast, studies in rodent mod-
els, in which miRNAs are targeted biochemically or geneti-
cally, have provided key insights into their contributions to
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the response to metabolic stress. Nonetheless, while there
are many examples in which manipulation of miRNA ex-
pression leads to anticipated changes in target mRNA ex-
pression in animal models (27,28), only in a few instances
have such changes been functionally linked to the patho-
genesis of complications.

Two glucose-regulated miRNAs play a role in the devel-
opment of renal abnormalities in diabetes mouse models.
High glucose induces expression of miR-29c, which directly
targets sprouty homolog 1 (Spry1), a negative regulator of
Rho kinase and Wnt signaling that is known to promote
diabetic nephropathy (29). In db/db mice, antisense oligo
knockdown of miR-29c decreases albuminuria and mesangial
matrix accumulation, hallmarks of diabetic nephropathy. By
contrast, high glucose downregulates miR-200a-3p, a nega-
tive regulator of profibrotic genes such as TGF-b2 (30).
Treatment of mice with a lentiviral short hairpin RNA tar-
geting miR-200a-3p exacerbates urinary albumin excretion
and renal fibrogenesis in streptozotocin-treated mice.

Furthermore, a number of miRNAs, which are regulated
by glucose in cell culture and dysregulated in tissues of
diabetic mice, have been shown to contribute to vascular
abnormalities in diabetes models relevant to retinopathy. In
retinal capillary endothelial cells of streptozotocin-treated
rats, decreased miR-200b is associated with upregulation
of both mRNA and protein for its target VEGF, similar
to effects observed in glucose-treated endothelial cells (31).
Injection of miR-200b mimic or antagomir into the vitreous
cavity causes anticipated changes in the abundance of miR-
200b and corresponding changes in its VEGF target. Fur-
thermore, treatment with miR-200b mimic mitigates against
increases in albumin permeability in the streptozotocin-
induced diabetes model. Another aspect of vascular func-
tion that is important in the pathogenesis of diabetes
complications is reparative angiogenesis that occurs after
ischemic insult. Glucose-induced miR-503 inhibits endo-
thelial proliferation, migration, and network formation in
vitro by targeting mRNAs such as Cdc25A (32). Levels of
miR-503 are higher in ischemic limb muscles of diabetic
compared with control mice, and transduction with an
adenoviral decoy for miR-503 upregulates CDC25A ex-
pression and increases capillary and arteriolar densities
in ischemic diabetic limb muscle.

LONG NONCODING RNA

Long noncoding RNAs (lncRNAs) are distinct from miRNAs
in both their structure and biogenesis. By definition, these
RNAs have limited protein-coding potential, even though
they are typically .200 nucleotides in length, transcribed
by RNA polymerase II, spliced, and maintain a 59-cap and
polyA tail (33). Initially, lncRNAs were considered products
of aberrant transcription, given their low expression, lack
of sizable open reading frames or identified translation
products, and poor sequence conservation across species.
However, functional analyses and genetic models of lncRNAs
have revealed that lncRNAs are a diverse class of noncoding
RNAs that regulate transcriptional activity through roles as

scaffolds, guides, and decoys for transcription factors and
epigenetic modifiers. lncRNAs can also alter RNA function
by serving as decoys for miRNAs and splicing factors. In
these varied roles, lncRNAs complex not only with RNAs
but also with proteins to form bioactive regulatory complexes
that impact cellular homeostasis. Many of the ;30,000
lncRNAs encoded within the mammalian genome have
cell-, tissue-, and developmental stage–specific patterns
of expression or respond to environmental stimuli, pro-
viding an additional dimension to gene regulation in
physiological and pathological settings.

A genetic screen identified lncRNA Gadd7 as a critical
mediator of lipotoxic cell death in Chinese hamster ovary
cells (6). Gadd7 is upregulated by lipid-induced reactive ox-
ygen species (ROS), and its induction is critical for propa-
gation of ROS, palmitate-induced endoplasmic reticulum
stress, and palmitate-induced cell death. Oxidative stress
is a key downstream response pathway, not only after
lipotoxicity, but also in the setting of genotoxic stress,
and Gadd7 has been shown to be upregulated in response
DNA damaging agents and ultraviolet radiation (34). While
the mechanism through which Gadd7 functions in lipotoxic
stress is unknown, during DNA damage–induced cell cycle
arrest, Gadd7 binds to TAR DNA-binding protein (TDP-43),
causing destabilization of cyclin-dependent kinase 6 (Cdk6)
mRNA (35). Knockdown of Gadd7 preserves the levels of
Cdk6 mRNA and protein and prevents G1/S-phase arrest
after genotoxic stress. Whether Gadd7 similarly regulates
cell cycle changes during metabolic stress responses re-
mains to be explored.

The most compelling evidence for a role of lncRNAs in
the response to the altered metabolic environment and
the pathophysiology of diabetes complications comes from
studies of glucose-regulated lncRNAs in diabetic retinopathy.
MALAT1 is upregulated in retinal endothelial cells cultured in
high glucose, in the retinas of streptozotocin-treated mice
and rats and mice that demonstrate impaired electroretino-
grams, and in the fibrovascular membranes and aqueous
humor from the eyes of human subjects with diabetic
retinopathy (36,37). Knockdown of MALAT1 in rodents us-
ing intraocular injection of short hairpin RNA improves ret-
inal function as documented by electroretinograms, decreases
apoptotic retinal cell death, and improves survival of retinal
pericytes and decreases retinal vascular leakage. In cultured
endothelial cells, knockdown of MALAT1 significantly de-
creases endothelial cell migration and tube formation, both
of which may contribute to progression of retinopathy. The
precise mechanism of these MALAT1 effects are not known,
but experiments using chemical inhibitors of signaling mole-
cules suggest that p38 MAPK signaling pathways are likely to
be important downstream effectors (37). Another lncRNA
that is induced by culture of cells in high glucose, myocardial
infarction–associated transcript 1 (MIAT1), is also upregu-
lated in the retinas of diabetic rodent models (38). Similar
to MALAT1, knockdown of MIAT1 in vivo improves visual
function and decreases loss of pericytes by apoptosis. MIAT1
acts in a regulatory loop with miR-150-5p, an miRNA that
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targets and represses VEGF expression in the setting of vas-
cular stress. The observation that MIAT1 contains miR-150-
5p–binding sites suggests that this lncRNA functions as a
sponge to sequester miR-150-5p and thereby effectively de-
repress VEGF mRNA expression.

RNA sequencing studies have revealed other lncRNAs
that are dysregulated in the setting of metabolic stress.
More than 1,000 lncRNAs are expressed in human islets,
approximately half of which are specific for pancreatic
tissue (39). Expression of two of these, HILNC-78 (TCL1
upstream neural differentiation–associated RNA [TUNAR])
and HI-LNC80 (oligodendrocyte maturation–associated long
intergenic noncoding RNA [OLMALINC]), are induced in
both human and mouse islets in culture media containing
high glucose. However the functional contribution of
these lncRNAs to b-cell dysfunction or the pathophysiol-
ogy of diabetes is not known. In another cell type, RNA
sequencing analysis of macrophages isolated from diabetic
db/db mice revealed 171 differentially expressed lncRNAs
(40). One of the most highly expressed, E330013P06 (E33),
is upregulated when monocytes are cultured in high glu-
cose, and its overexpression sensitizes macrophages to
lipopolysaccharide-induced activation, cytokine produc-
tion, and foam cell transformation. Interestingly, this
lncRNA is also upregulated in monocytes from patients
with diabetes. Given the importance of inflammation in
diabetes complications, future studies to probe its contri-
bution to tissue dysfunction and damage during metabolic
stress will be of interest. Finally, another avenue of dis-
covery for lncRNAs relevant to metabolic stress will be
further characterization of the broad classes of lncRNAs
induced by ROS (41), since glucose and lipid metabolic
stress induce ROS in cultured cells and since tissue dam-
age in diabetes is accompanied by evidence of oxidative
stress. As with miRNAs, lncRNAs impact the biology of
metabolic stress responses at the level of downstream
gene expression (Fig. 1). The many pre- and posttran-
scriptional mechanisms through which lncRNAs can func-
tion suggest that the roles of these noncoding RNAs in
metabolic stress will be similarly diverse.

RIBOSOMAL RNA

Ribosomal RNAs (rRNAs) are among the most transcribed
and the most abundant RNAs in mammalian cells. To-
gether, the 28S, 18S, 5S, and 5.8S mature rRNAs pro-
vide the structural framework for ribosomal proteins and
facilitate the extension of nascent peptide chains through
the peptidyl transferase ribozyme. Generation of ribosomes
is highly regulated spatially, with ribosomal DNA genes and
transcriptional and processing machinery clustered in nu-
cleoli. Chemical agents known to cause oxidative stress
induce nucleolar stress with impairment of rRNA gene
transcription, leak of nucleolar proteins to the cytoplasm,
and cell cycle arrest (42). When prolonged, such as occurs
with knockdown of rRNA transcription factors, nucleolar
stress leads to P53-mediated apoptosis (43). As yet, no
studies have established whether the underlying metabolic

perturbations in diabetes cause cell death through nucleolar
stress, though it is plausible that high glucose or lipid could
trigger this pathway.

Like other cellular macromolecules, rRNAs are likely
to be impacted by the oxidative stress that accompanies
glucotoxicity and lipotoxicity. In yeast, oxidative stress
leads to endonucleolytic cleavage of the 25S and 5.8 S
rRNAs (44). The integrity of rRNA in the setting of hyper-
glycemia and hyperlipidemia has not been studied. How-
ever, in patients with diabetes, the products of oxidative
modification of rRNA are observed in the urine, and abun-
dance of these species is linked to all-cause and diabetes-
related mortality (45). rRNAs that are damaged by cleavage
or oxidative modifications are likely to be sequestered and
degraded through a specialized form of autophagy, termed
ribophagy (46). Effects of the altered metabolic environ-
ment on rRNA integrity and abundance may contribute to
the observed decreased RNA content and rates of protein
synthesis in models of poorly controlled diabetes (47).

TRANSFER RNA

Transfer RNAs (tRNAs) are critical noncoding RNA com-
ponents of the translational machinery that serve as
adapters to deliver amino acids to nascent peptide chains
in accordance with mRNA-specified codons. tRNAs un-
dergo extensive processing and posttranscriptional mod-
ification, which are required for proper tRNA folding,
stability, and function (48). Oxidative stress, a major com-
ponent of lipotoxicity and glucotoxicity, and DNA damage
dynamically reprogram tRNA methylation in yeast through
the actions of specific tRNA methyltransferases (49,50).
The resulting changes in tRNA modifications alter codon-
anticodon interactions in ways that impact translational
efficiency of select classes of genes to protect against oxi-
dative stress. Metabolic stress–mediated modifications of
tRNA modifications could contribute to the altered pro-
grams of gene expression associated with complications
in tissues of diabetic animals.

Global and programmatic changes in gene expression
in metabolic stress could also result from endonucleolytic
cleavage of mature tRNAs, which is known to be potently
induced by oxidative stress (51,52). tRNA cleavage, com-
monly within the accessible anticodon loop, is mediated by
the RNase angiogenin. The resulting tRNA halves can in-
teract with translational machinery to inhibit translation
initiation or cause translational arrest and stress granule
assembly, even in the absence of changes in total tRNA
levels (53). Translational reprogramming is critical for cel-
lular adaptations to stress stimuli, such as oxidative stress,
and studies exploring tRNA cleavage in response to gluco-
toxic and lipotoxic stress could uncover mechanisms of
metabolic stress–induced translational alterations (54).

SMALL NUCLEOLAR RNA

Small nucleolar RNAs (snoRNAs), noncoding RNAs that
range from 60 to 300 nucleotides in length, are named for
their cellular localization within the nuclear subcompartment,
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where they participate in processing and modification of
nascent rRNAs and small nuclear RNAs. Most mammalian
snoRNAs are encoded within the introns of RNA poly-
merase II–transcribed genes and processed out of intron
lariats during splicing, although a small number are in-
dependently transcribed from their own promoters by
RNA polymerase III. Mature snoRNAs complex with pro-
teins to form a machinery that precisely directs posttran-
scriptional modification of rRNAs and spliceosomal RNAs
through Watson-Crick base pairing of their antisense el-
ement with the appropriate target RNA (55). Short se-
quence motifs define box C/D and box H/ACA classes of
snoRNAs that associate with different proteins to guide
29-O-methylation or pseudouridylation, respectively, on
their target RNAs. In addition to these canonical func-
tions, some snoRNAs have been implicated in directing
alternative mRNA splicing, and others have been found to
be processed to smaller, miRNA-like fragments that regu-
late gene expression posttranscriptionally (56,57).

Another novel function for snoRNAs was identified in
a genetic screen designed to elucidate regulators of cell
death in response to metabolic stress in mammalian
fibroblasts (14). In this study, disruption of the Rpl13a
locus by a promoter trap retrovirus enhanced cell sur-
vival in media containing lipotoxic concentrations of
palmitic acid and high glucose. Genetic complementation
of the mutant and knockdown experiments in wild-type
cells revealed that loss of a family of box C/D snoRNAs
encoded within four introns of the gene, and not the
cDNA, is a critical determinant of the response to met-
abolic and oxidative stress. Furthermore, knockdown of
these snoRNAs in the livers of mice protects against
propagation of ROS and oxidative tissue damage. While
haploinsufficiency of the Rpl13a snoRNAs is sufficient to
protect against metabolic stress in the mutant cell line,
predicted rRNA targets for these box C/D snoRNAs
(U32a, U33, U34, and U35a) remain 29-O-methylated,
indicating that the role for these snoRNAs in metabolic
stress likely involves other, yet to be identified targets.
The observation that these snoRNAs accumulate in the
cytoplasm during metabolic and oxidative stress further
suggests the possibility of novel RNA targets in the cyto-
plasm (58). The mechanism of action of these non-
coding RNAs and elucidation of potential roles in the
pathology of diabetes complications are active areas
of investigation.

While it is possible that snoRNAs, including those
from the Rpl13a locus, target mRNAs or other cytosolic
RNAs to impact gene expression posttranscriptionally,
recent studies also provide support for a novel signaling
role involving the RNA-dependent protein kinase (PKR).
PKR is a pattern recognition receptor that activates in-
nate host antiviral mechanisms in response to both
double-stranded RNA and metabolic stress (59,60). Ge-
netic and diet-induced models of obesity exhibit increased
activation of PKR in white adipose tissue and liver, and
acute lipid infusion in vivo and lipotoxic conditions in

vitro are sufficient to active PKR (60). A recent study found
that snoRNAs are the major class of PKR-bound RNAs
under lipotoxic conditions (61). Furthermore, overexpres-
sion of SNORD113, SNORA3, or SNORA71 is sufficient to
induce PKR activation and phosphorylation of eIF2a, lead-
ing to stress-induced alterations in translation. PKR also
directly phosphorylates and inhibits insulin receptor sub-
strate 1, and PKR knockout mice are protected from high-
fat diet–induced hyperglycemia and hyperinsulinemia (60).
Whether phosphorylation of specific downstream targets
by PKR is regulated by specific snoRNAs or combinations
of snoRNAs remains to be determined.

CONCLUSIONS AND FUTURE DIRECTIONS

We are only beginning to understand how different classes of
noncoding RNAs impact the response of cells and tissues to
the altered metabolic environment. Abundance of miRNAs
and lncRNAs is regulated by abnormal substrate levels.
While it is largely assumed that alterations in the levels of
these noncoding RNAs reflect differences in transcription,
future studies will be required to address whether changes
in transcription or processing contribute to the observed
altered abundance or whether metabolic stress impacts
the RNA half-life. In the case of rRNAs and tRNAs, regu-
lated degradation and covalent modifications do contribute to
metabolic stress responses (Fig. 2). Recent studies of snoRNAs
suggest that this class of noncoding RNA is differentially
localized in response to changes in the metabolic milieu.
Whether or not altered localization correlates with non-
canonical targets remains to be determined.

While different classes of noncoding RNAs engage
downstream targets and pathways in diverse ways, each
can profoundly impact gene expression and the response
to environmental challenge. A greater understanding of
noncoding RNA pathways has the potential to provide
new insights not only into metabolic regulation but also
into phenotypic variation in metabolic diseases that is not

Figure 2—Oxidative stress–mediated alterations in rRNAs, tRNAs,
and snoRNAs. Excessive ROS cause modifications (△) of rRNAs,
tRNAs, and snoRNAs in ways that affect cellular function and sur-
vival. For rRNAs and tRNAs, future studies will be required to es-
tablish the relevance of these alterations in metabolic disease,
whereas snoRNAs have already been demonstrated to function in
lipotoxic cell death.
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explained by alterations in exonic sequences. Furthermore,
over the past several years, approaches using antisense
oligonucleotides directed against miRNAs (i.e., anti-miRs)
have been shown to hold promise in reducing the levels of
the target miRNAs and modifying disease phenotypes in
murine disease models, including hyperlipidemia (62,63).
It is intriguing to consider that such approaches may be
useful in preventing complications in patients with diabe-
tes. Looking to the future, it is also possible to envision
new therapeutic approaches that target lncRNAs and
snoRNAs—classes of noncoding RNAs that are also ame-
nable to antisense strategies.
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