957 research outputs found

    A high-throughput screening method for determining the substrate scope of nitrilases

    Get PDF
    Nitrile compounds are intermediates in the synthesis of pharmaceuticals such as atorvastatin. We have developed a chromogenic reagent to screen for nitrilase activity as an alternative to Nessler's reagent. It produces a semi-quantifiable blue colour and hydrolysis of 38 nitrile substrates by 23 nitrilases as cell-free extracts has been shown

    Biocatalysis as Useful Tool in Asymmetric Synthesis: An Assessment of Recently Granted Patents (2014–2019)

    Get PDF
    The broad interdisciplinary nature of biocatalysis fosters innovation, as different technical fields are interconnected and synergized. A way to depict that innovation is by conducting a survey on patent activities. This paper analyses the intellectual property activities of the last five years (2014–2019) with a specific focus on biocatalysis applied to asymmetric synthesis. Furthermore, to reflect the inventive and innovative steps, only patents that were granted during that period are considered. Patent searches using several keywords (e.g., enzyme names) have been conducted by using several patent engine servers (e.g., Espacenet, SciFinder, Google Patents), with focus on granted patents during the period 2014–2019. Around 200 granted patents have been identified, covering all enzyme types. The inventive pattern focuses on the protection of novel protein sequences, as well as on new substrates. In some other cases, combined processes, multi-step enzymatic reactions, as well as process conditions are the innovative basis. Both industries and academic groups are active in patenting. As a conclusion of this survey, we can assert that biocatalysis is increasingly recognized as a useful tool for asymmetric synthesis and being considered as an innovative option to build IP and protect synthetic routes

    Occurrence and formation of indole-3-acetamide in Arabidopsis thaliana

    Full text link
    An HPLC/GC–MS/MS technique (high-pressure liquid chromatography in combination with gas chromatography–tandem mass spectrometry) has been worked out to analyze indole-3-acetamide (IAM) with very high sensitivity, using isotopically labelled IAM as an internal standard. Using this technique, the occurrence of IAM in sterile-grown Arabidopsis thaliana (L.) Heynh. was demonstrated unequivocally. In comparison, plants grown under non-sterile conditions in soil in a greenhouse showed approximately 50% higher average levels of IAM, but the differences were not statistically significant. Thus, microbial contributions to the IAM extracted from the tissue are likely to be minor. Levels of IAM in sterile-grown seedlings were highest in imbibed seeds and then sharply declined during the first 24 h of germination and further during early seedling development to remain below 20–30 pmol g–1 fresh weight throughout the rosette stage. The decline in indole-3-aetic acid (IAA) levels during germination was paralleled by a similar decline in IAM levels. Recombinant nitrilase isoforms 1, 2 and 3, known to synthesize IAA from indole-3-acetonitrile, were shown to produce significant amounts of IAM in vitro as a second end product of the reaction besides IAA. NIT2 was earlier shown to be highly expressed in developing and in mature A. thaliana embryos, and NIT3 is the dominantly active gene in the hypocotyl and the cotyledons of young, germinating seedlings. Collectively, these data suggest that the elevated levels of IAM in seeds and germinating seedlings result from nitrilase action on indole-3-acetonitrile, a metabolite produced in the plants presumably from glucobrassicin turnover

    A New Thermophilic Nitrilase from an Antarctic Hyperthermophilic Microorganism

    Get PDF
    Several environmental samples from Antarctica were collected and enriched to search for microorganisms with nitrilase activity. A new thermostable nitrilase from a novel hyperthermophilic archaea Pyrococcus sp. M24D13 was purified and characterized. The activity of this enzyme increased as the temperatures rise from 70 up to 85°C. Its optimal activity occurred at 85°C and pH 7.5. This new enzyme shows a remarkable resistance to thermal inactivation retaining more than 50% of its activity even after 8 h of incubation at 85°C. In addition, this nitrilase is highly versatile demonstrating activity toward different substrates, such as benzonitrile (60 mM, aromatic nitrile) and butyronitrile (60 mM, aliphatic nitrile), with a specific activity of 3286.7 U mg(−1) of protein and 4008.2 U mg(−1) of protein, respectively. Moreover the enzyme NitM24D13 also presents cyanidase activity. The apparent Michaelis–Menten constant (K(m)) and V(máx) of this Nitrilase for benzonitrile were 0.3 mM and 333.3 μM min(−1), respectively, and the specificity constant (k(cat)/K(m)) for benzonitrile was 2.05 × 10(5) s(−1) M(−1)

    Mechanism study of alachlor biodegradation by Paecilomycesmarquandii with proteomic and metabolomic methods

    Get PDF
    Alachlor is an herbicide that is widely used worldwide to protect plant crops against broadleaf weedsand annual grasses. However, due to its endocrine-disrupting activity, its application had been bannedin the European Union. As described in our earlier work, Paecilomyces marquandii is a microscopic funguscapable of alachlor removal by N-acetyl oxidation. Our current work uses proteomics and metabolomicsto gain a better understanding of alachlor biodegradation by the microscopic fungus P. marquandii.The data revealed that the addition of alachlor reduced the culture growth and glucose consump-tion rates. Moreover, the rates of glycolysis and the tricarboxylic acids (TCA) cycle increased duringthe initial stage of growth, and there was a shift toward the formation of supplementary materials(UDP-glucose/galactose) and reactive oxygen species (ROS) scavengers (ascorbate). Proteomic analy-sis revealed that the presence of xenobiotics resulted in a strong upregulation of enzymes related toenergy, sugar metabolism and ROS production. However, the unique overexpression of cyanide hydratasein alachlor-containing cultures may implicate this enzyme as the key protein involved in the alachlorbiodegradation pathway. The characterization of P. marquandii-mediated alachlor removal in terms of cellstructure and function provides a deeper insight into the strategies of microorganisms toward xenobioticbiodegradation.This study was supported by the grant of the National Science Centre, Poland (Project No. UMO-2011/01/B/NZ9/02898)

    Detoxification and stress response genes expressed in a western North American bumble bee, Bombus huntii (Hymenoptera: Apidae)

    Get PDF
    BACKGROUND: The Hunt bumble bee (Bombus huntii Greene, Hymenoptera: Apidae) is a holometabolous, social insect important as a pollinator in natural and agricultural ecosystems in western North America. Bumble bees spend a significant amount of time foraging on a wide variety of flowering plants, and this activity exposes them to both plant toxins and pesticides, posing a threat to individual and colony survival. Little is known about what detoxification pathways are active in bumble bees, how the expression of detoxification genes changes across life stages, or how the number of detoxification genes expressed in B. huntii compares to other insects. RESULTS: We found B. huntii expressed at least 584 genes associated with detoxification and stress responses. The expression levels of some of these genes, such as those encoding the cytochrome P450s, glutathione S-transferases (GSTs) and glycosidases, vary among different life stages to a greater extent than do other genes. We also found that the number of P450s, GSTs and esterase genes expressed by B. huntii is similar to the number of these genes found in the genomes of other bees, namely Bombus terrestris, Bombus impatiens, Apis mellifera and Megachile rotundata, but many fewer than are found in the fly Drosophila melanogaster. CONCLUSIONS: Bombus huntii has transcripts for a large number of detoxification and stress related proteins, including oxidation and reduction enzymes, conjugation enzymes, hydrolytic enzymes, ABC transporters, cadherins, and heat shock proteins. The diversity of genes expressed within some detoxification pathways varies among the life stages and castes, and we typically identified more genes in the adult females than in larvae, pupae, or adult males, for most pathways. Meanwhile, we found the numbers of detoxification and stress genes expressed by B. huntii to be more similar to other bees than to the fruit fly. The low number of detoxification genes, first noted in the honey bee, appears to be a common phenomenon among bees, and perhaps results from their symbiotic relationship with plants. Many flowering plants benefit from pollinators, and thus offer these insects rewards (such as nectar) rather than defensive plant toxins

    Using a nitrilase for the surface modification of acrylic fibres

    Get PDF
    The surface of an acrylic fibre was modified with a commercial nitrilase (EC 3.5.5.1). The effect of fibre solvents and polyols on nitrilase catalysis efficiency and stability was investigated. The nitrilase action on the acrylic fabric was improved by the combined addition of 1 M sorbitol and 4% N, N-dimethylacetamide. The colour levels for samples treated with nitrilase increased 156% comparing to the control samples. When the additives were introduced in the treatment media, the colour levels increased 199%. The enzymatic conversion of nitrile groups into the corresponding carboxylic groups, on the fibre surface, was followed by the release of ammonia and polyacrylic acid. A surface erosion phenomenon took place and determined the “oscillatory” behaviour of the amount of dye uptake with time of treatment. These results showed that the outcome of the application of the nitrilase for the acrylic treatment is intimately dependent on reaction media parameters, such as time, enzyme activity and formulation.(undefined

    Acrylamide Production Using Encapsulated Nitrile Hydratase from \u3cem\u3ePseudonocardia thermophila\u3c/em\u3e in a Sol–gel Matrix

    Get PDF
    The cobalt-type nitrile hydratase from Pseudonocardia thermophila JCM 3095 (PtNHase) was successfully encapsulated in tetramethyl orthosilicate sol–gel matrices to produce a PtNHase:sol–gel biomaterial. The PtNHase:sol–gel biomaterial catalyzed the conversion of 600 mM acrylonitrile to acrylamide in 60 min at 35 °C with a yields of \u3e90%. Treatment of the biomaterial with proteases confirmed that the catalytic activity is due to the encapsulated enzyme and not surface bound NHase. The biomaterial retained 50% of its activity after being used for a total of 13 consecutive reactions for the conversion of acrylonitrile to acrylamide. The thermostability and long-term storage of the PtNHase:sol–gel are substantially improved compared to the soluble NHase. Additionally, the biomaterial is significantly more stable at high concentrations of methanol (50% and 70%, v/v) as a co-solvent for the hydration of acrylonitrile than native PtNHase. These data indicate that PtNHase:sol–gel biomaterials can be used to develop new synthetic avenues involving nitriles as starting materials given that the conversion of the nitrile moiety to the corresponding amide occurs under mild temperature and pH conditions
    corecore