13,807 research outputs found
Atmospheric Heat Redistribution on Hot Jupiters
Infrared lightcurves of transiting hot Jupiters present a trend in which the
atmospheres of the hottest planets are less efficient at redistributing the
stellar energy absorbed on their daysides---and thus have a larger day-night
temperature contrast---than colder planets. No predictive atmospheric model has
been published that identifies which dynamical mechanisms determine the
atmospheric heat redistribution efficiency on tidally locked exoplanets. Here
we present a two-layer shallow water model of the atmospheric dynamics on
synchronously rotating planets that explains the observed trend. Our model
shows that planets with weak friction and weak irradiation exhibit a banded
zonal flow with minimal day-night temperature differences, while models with
strong irradiation and/or strong friction exhibit a day-night flow pattern with
order-unity fractional day-night temperature differences. To interpret the
model, we develop a scaling theory that shows that the timescale for gravity
waves to propagate horizontally over planetary scales, t_wave, plays a dominant
role in controlling the transition from small to large temperature contrasts.
This implies that heat redistribution is governed by a wave-like process,
similar to the one responsible for the weak temperature gradients in the
Earth's tropics. When atmospheric drag can be neglected, the transition from
small to large day-night temperature contrasts occurs when t_wave ~
sqrt(t_rad/Omega), where t_rad is the radiative relaxation time and Omega is
the planetary rotation frequency. Alternatively, this transition criterion can
be expressed as t_rad ~ t_vert, where t_vert is the timescale for a fluid
parcel to move vertically over the difference in day-night thickness. These
results subsume the commonly used timescale comparison for estimating heat
redistribution efficiency between t_rad and the global horizontal advection
timescale, t_adv.Comment: Accepted to ApJ with minor edits compared to version 1; 17 pages, 11
figure
Phase-Dependent Properties of Extrasolar Planet Atmospheres
Recently the Spitzer Space Telescope observed the transiting extrasolar
planets, TrES-1 and HD209458b. These observations have provided the first
estimates of the day side thermal flux from two extrasolar planets orbiting
Sun-like stars. In this paper, synthetic spectra from atmospheric models are
compared to these observations. The day-night temperature difference is
explored and phase-dependent flux densities are predicted for both planets. For
HD209458b and TrES-1, models with significant day-to-night energy
redistribution are required to reproduce the observations. However, the
observational error bars are large and a range of models remains viable.Comment: 8 pages, 7 figures, accepted for publication in the Astrophysical
Journa
Three-dimensional atmospheric circulation of hot Jupiters on highly eccentric orbits
Of the over 800 exoplanets detected to date, over half are on non-circular
orbits, with eccentricities as high as 0.93. Such orbits lead to time-variable
stellar heating, which has implications for the planet's atmospheric dynamical
regime. However, little is known about this dynamical regime, and how it may
influence observations. Therefore, we present a systematic study of hot
Jupiters on highly eccentric orbits using the SPARC/MITgcm, a model which
couples a three-dimensional general circulation model with a plane-parallel,
two-stream, non-grey radiative transfer model. In our study, we vary the
eccentricity and orbit-average stellar flux over a wide range. We demonstrate
that the eccentric hot Jupiter regime is qualitatively similar to that of
planets on circular orbits; the planets possess a superrotating equatorial jet
and exhibit large day-night temperature variations. We show that these
day-night heating variations induce momentum fluxes equatorward to maintain the
superrotating jet throughout its orbit. As the eccentricity and/or stellar flux
is increased, the superrotating jet strengthens and narrows, due to a smaller
Rossby deformation radius. For a select number of model integrations, we
generate full-orbit lightcurves and find that the timing of transit and
secondary eclipse viewed from Earth with respect to periapse and apoapse can
greatly affect what we see in infrared (IR) lightcurves; the peak in IR flux
can lead or lag secondary eclipse depending on the geometry. For those planets
that have large day-night temperature variations and rapid rotation rates, we
find that the lightcurves exhibit "ringing" as the planet's hottest region
rotates in and out of view from Earth. These results can be used to explain
future observations of eccentric transiting exoplanets.Comment: 20 pages, 18 figures, 2 tables; Accepted to Ap
The atmospheric circulation of the super Earth GJ 1214b: Dependence on composition and metallicity
We present three-dimensional atmospheric circulation models of GJ 1214b, a
2.7 Earth-radius, 6.5 Earth-mass super Earth detected by the MEarth survey.
Here we explore the planet's circulation as a function of atmospheric
metallicity and atmospheric composition, modeling atmospheres with a low
mean-molecular weight (i.e., H2-dominated) and a high mean-molecular weight
(i.e. water- and CO2-dominated). We find that atmospheres with a low
mean-molecular weight have strong day-night temperature variations at pressures
above the infrared photosphere that lead to equatorial superrotation. For these
atmospheres, the enhancement of atmospheric opacities with increasing
metallicity lead to shallower atmospheric heating, larger day-night temperature
variations and hence stronger superrotation. In comparison, atmospheres with a
high mean-molecular weight have larger day-night and equator-to-pole
temperature variations than low mean-molecular weight atmospheres, but
differences in opacity structure and energy budget lead to differences in jet
structure. The circulation of a water-dominated atmosphere is dominated by
equatorial superrotation, while the circulation of a CO2-dominated atmosphere
is instead dominated by high-latitude jets. By comparing emergent flux spectra
and lightcurves for 50x solar and water-dominated compositions, we show that
observations in emission can break the degeneracy in determining the
atmospheric composition of GJ 1214b. The variation in opacity with wavelength
for the water-dominated atmosphere leads to large phase variations within water
bands and small phase variations outside of water bands. The 50x solar
atmosphere, however, yields small variations within water bands and large phase
variations at other characteristic wavelengths. These observations would be
much less sensitive to clouds, condensates, and hazes than transit
observations.Comment: 12 pages, 11 figures, 2 tables, accepted to Ap
Evolution and Earth's Entropy
Entropy decreases on the Earth due to day/night temperature differences. This
decrease exceeds the decrease in entropy on the Earth related to evolution by
many orders of magnitude. Claims by creationists that science is somehow
inconsistent with regard to evolution are thus show to be baseless.Comment: 2 page
Diallel analysis of varying late season night temperatures on the development of a range of fluecured tobacco (Nicotiana tabacum l.) genotypes : a thesis presented in partial fulfillment of the requirements for the degree of Masterate of Agricultural Science in Plant Science at Massey University
Pg 62 not in original - misnumberedA study was conducted in the climate room facilities, at D.S.I.R. Plant Physiology Division, Palmerston North, on the effect of varying late season night temperatures on the development of a range of flue-cured tobacco genotypes. The study involved imposing three night temperatures, 10°C, 15°C and 20°C, when the plants came into flower. Ten F1 genotypes of a five parent diallel cross (no parents, no reciprocals) were grown at each night temperature with three replications per temperature. Fourteen morphological, physical and chemical characters were measured. The effect of late season night temperature was negligible but there was some evidence of genotype environment interaction for some of the characters. The experiment was conducted using single plants as plots and the statistical analysis showed acceptable coefficients of variation for biological studies. The genetic analysis of the diallel showed that general combining ability variance is the most important type of genetic variance in the characters examined. This agrees with the majority of other tobacco diallel studies. As general combining ability variance is largely a measure of additive genetic variance, breeding homozygous lines from a heterozygous base population should be the best approach to follow. Heritability values were of sufficient size for several of the commercially important characters to indicate that improvement through selection was possible. General combining ability and phenotypic simple correlations between pairs of characters were generally in good agreement, demonstrating that phenotypic selection will result in altering the genotypes in the desired direction for the characters in question. The experiment showed a large negative correlation between the two economically important characters, yield and total nicotine alkaloids. This result is in agreement with similar studies carried out by other workers in this field. The experiment revealed a number of improvements which could be useful in the conduct of future tobacco climate room studies
On the return period of the 2003 heat wave
Extremal events are difficult to model since it is difficult to characterize formally those events. The 2003 heat wave in Europe was not characterized by very high temperatures, but mainly the fact that night temperature were no cool enough for a long period of time. Hence, simulation of several models (either with heavy tailed noise or long range dependence) yield different estimations for the return period of that extremal event.Heat wave, long range dependence, return period, heavy tails, GARMA processes, SARIMA processes
A Time-Dependent Model of HD209458b
We developed a time-dependent radiative model for the atmosphere of HD209458b
to investigate its thermal structure and chemical composition. Time-dependent
temperature profiles were calculated, using a uniform zonal wind modelled as a
solid body rotation. We predict day/night temperature variations of 600K around
0.1 bar, for a 1 km/s wind velocity, in good agreement with the predictions by
Showman & Guillot (2002). On the night side, the low temperature allows the
sodium to condense. Depletion of sodium in the morning limb may explain the
lower than expected abundance found by Charbonneau et al (2002).Comment: 2 pages, LaTeX with 1 EPS figure embedded, using newpasp.sty
(supplied). To appear in the proceedings of the XIXth IAP colloquium
"Extrasolar Planets: Today and Tomorrow" held in Paris, France, 2003 June 30
-- July 4, ASP Conf. Se
Respiration sensitivity to night temperature and incoming light intensity in rice and its impact on biomass production. [Poster abstract P362 IRC14-0630]
Atmospheric Circulation of Eccentric Hot Neptune GJ436b
GJ436b is a unique member of the transiting extrasolar planet population
being one of the smallest and least irradiated and possessing an eccentric
orbit. Because of its size, mass and density, GJ436b could plausibly have an
atmospheric metallicity similar to Neptune (20-60 times solar abundances),
which makes it an ideal target to study the effects of atmospheric metallicity
on dynamics and radiative transfer in an extrasolar planetary atmosphere. We
present three-dimensional atmospheric circulation models that include realistic
non-gray radiative transfer for 1, 3, 10, 30, and 50 times solar atmospheric
metallicity cases of GJ436b. Low metallicity models (1 and 3 times solar) show
little day/night temperature variation and strong high-latitude jets. In
contrast, higher metallicity models (30 and 50 times solar) exhibit day/night
temperature variations and a strong equatorial jet. Spectra and light curves
produced from these simulations show strong orbital phase dependencies in the
50 times solar case and negligible variations with orbital phase in the 1 times
solar case. Comparisons between the predicted planet/star flux ratio from these
models and current secondary eclipse measurements support a high metallicity
atmosphere (30-50 times solar abundances) with disequilibrium carbon chemistry
at play for GJ436b. Regardless of the actual atmospheric composition of GJ436b,
our models serve to illuminate how metallicity influences the atmospheric
circulation for a broad range of warm extrasolar planets.Comment: 25 pages, 13 figure
- …
