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On the return period of the 2003 heat wave

Arthur Charpentier a

aUniversité Rennes 1, CREM, 7 place Hoche, 35000 Rennes, France
& École Polytechnique, 91128 Palaiseau cedex, France

Abstract

Extremal events are difficult to model since it is difficult to characterize formally
those events. The 2003 heat wave in Europe was not characterized by very high
temperatures, but mainly the fact that night temperature were no cool enough for
a long period of time. Hence, simulation of several models (either with heavy tailed
noise or long range dependence) yield different estimations for the return period of
that extremal event.

Key words: Heat wave, long range dependence, return period, heavy tails,
GARMA processes, SARIMA processes

1 Introduction and motivations

In February 2005, opening the conference on Climate change: a global, national
and regional challenge, chairman Dennis Tirpak pointed out that “there is no
longer any doubt that the Earth’s climate is changing [...] globally, nine of
the past 10 years have been the warmest since records began in 1861”. The
summer of 2003 will be remembered for the extreme heat, and the approx-
imately 30,000 heat-related deaths over western Europe (see IVS (2003) or
WHO (2004)). More specifically, the period 1-15 August 2003 was the most
intense heat of the summer. The report of Pirard et al. (2005) states that “Eu-
rope experienced an unprecedented heat wave in the Summer 2003. In France,
it was the warmest summer recorded for 53 years in terms of minimal, max-
imal and average temperature and in terms of duration”. Luterbacher et al.
(2003) even claim that the “summer of 2003 was by far the hottest summer

Email address: arthur.charpentier@univ-rennes1.fr (Arthur Charpentier).
1 The financial support from the AXA Chair on Large Risks in Insurance (Fonda-
tion du Risque) is gratefully acknowledged.
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since 1500”. But because of global warming, their estimate of the return pe-
riod of that event is 250 years. Hence, nobody was expecting such an event,
and nothing had been planned in France to face it. Further discussion on the
impact of that event can be found in Poumadre et al. (2005), Trigo et al.
(2005) or Fink et al. (2004).

Actually, the underestimation of the probability of occurrence of such an event
was already mentioned in the Third IPCC Assessment (Intergovernmental
Panel on Climate Change (2001)). More specifically, it is pointed out that
treatment of extremes (e.g. trends in extreme high temperature) is “clearly
inadequate”. Karl & Trenberth (2003) noticed that “the likely outcome is
more frequent heat waves”, “more intense and longer lasting” added Meehl
& Tebaldi (2004). In this section, the goal is to get an accurate estimate of
the return period of that event.

One of the characteristics of 2003’s heat wave has not been the intensity,
but the length during 10 to 20 days in several major cities in France. For
instance, in Nı̂mes, there were more than 30 days with temperatures higher
than 35◦ C (versus 4 in hot summers, and 12 in the previous heat wave,
in 1947). Similarly, the average maximum (minimum) temperature in Paris
peaked over 35◦ C (approached 20◦ C) for 10 consecutive days, 4-13 August.
Previous records were 4 days in 1998 (8 to 11 of August), and 5 days in
1911 (8 to 12 of August). Similar conditions were found in London, where
maximum temperatures peaked above 30◦C during the period 4-13 August
(see Burt (2004a), Burt & Eden (2004) and Burt (2004b)). Fink et al. (2004)
also observed that ‘night-time minimum temperature remained extremely high’.
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Fig. 1. Minimum daily temperature in Paris, years 1997 to 2003, 2003 being the
large plain line. The plain area is the hottest 10 day period of 2003.

The use of minimal temperature was initiated by Karl & Knight (1997) when
modeling 1995 heatwave in Chicago: they concentrated on the severity of an
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annual “worst heat event”, and suggested that several nights with no relief
from very warm nighttime minimum temperature should be most important
for health impact (see also Kovats & Koppe (2005)).

In section 2 we will first try to estimate and remove the (linear) trend of
the series, to obtain a stationary series that can be modeled used standard
processes technique. Three models will be considered in section 3, either with
long or shor range memory (to allow for persistence) and either light or heavy
tails (to allow for extremal daily temperatures). A discussion on time-stability
of those models will be proposed in section 4. Using those stochastic model,
we will look carefully in section 5 at the return period of the 2003 heatwave.

2 Modeling trend of the daily temperature

Smith (1993) or Dempster & Liu (1995) suggested that, on a long period, the
average annual temperature should be decomposed as follows:

• an increasing linear trend,
• a random component, with long range dependence.

We consider here the daily dataset provided by the European Climate Assess-
ment & Dataset project 2 . The global warming can easily be observed using
some nonparametric regression (see e.g. Figures 2 and 3, exhibiting a signifi-
cant warming trend). At first sight, some linear trend can be assumed. This
intuition can also be found in Beniston (2004)

In the case of the minimal temperature in Paris, the model is

Xt = −41.10925555
(1.89362)

+ 0.02497250
(0.000970)

· t+ Yt, (1)

where t = 1900, · · · , 2004 (on a daily basis, expressed in years, from Jan-
uary 1900 till September 2004). Technical justifications of the validity of that
estimation are given in Appendix 7.1.

In order to confirm the linear trend, on Figure 2, we consider a spline nonlinear
regression on the left, and a lowess regression (locally linear regression) on the
right. The linear trend is the doted line, and the plain line is the nonparametric
estimation. The 95%-confidence interval is the shaded area. Not that the linear
tendency is always in the 95% confidence region, which confirms the intuition
of a linear tendency, as a first assumption.

2 From http://eca.knmi.nl/dailydata/index.php. Temperature have been ob-
served in Paris, Parc Montsouris, +48:49:23,+02:20:12
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Another idea can be to run a stepwise model selection where a polynomial
model is consider. Starting from a degree 6 polynomial tendency. When in-
cluding higher degrees (2, 3 and 5) as obtained from the backward stepwise
procedure, the slope of the trend (that can be seen on Figure 3) is smaller on
recent years. Thus, this can justify the scenario that will be derived in Section
4, where an optimist scenario is considered (with a flat trend). On the Figure,
the polynomial trend is in dotted line, and the lowess regression in plain line.
The horizontal line is the slope of the linear trend. Both confirm that the slope
is slower nowadays than it used to be during period 1950:1980 for instance.

Fig. 2. Trend of the series, spline regression (on the left) and local regression (on
the right).

Fig. 3. Trend of the series, polynomial adjustment (on the left) and analysis of the
slope (first derivative). The plain line is the slope of the linear trend.

Several authors (from Lane, Nichols & Osborn (1994) to Black et al. (2004))
have tried to explain global warming, and to find explanatory factors. As
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pointed out in Quereda Sala et al. (2000), the “analysis of the trend is difficult
and could be biased by non-climatic processes such as the urban effect”. In
fact, “most of the temperature rise could be due to an urban effect”: global
warming can be understood as one of the consequence of “global pollution”
(see Houghton (1997), or Braun et al. (2006) for a detailed study of the impact
of transportation).

Again, the aim in this paper is not to study intensively this trend, but to focus
more on the remaining series (Yt)t∈Z (obtained by removing the trend).

3 Long range or fat tailed distribution ?

3.1 Modeling the dynamic of (Yt)t∈Z

The study of stationary series (Yt)t∈Z can be done either through its autoco-
variance function,

h 7→ γX (h) = cov (Xt, Xt−h) = E (XtXt−h)− E (Xt) · E (Xt−h) ,

or its Fourier transform, called the spectral density of the series,

fX (ω) =
1

2π

∑
h∈Z

γX (h) exp (iωh)

for all ω ∈ [0, 2π]. Those two notions are equivalent (see Brockwell & Davis
(1991) for more details). Set finally ρX(h) the autocorrelation of order h,
defined as ρX(h) = γX(h)/γX(0). For instance, a gaussian white noise is a
sequence (εt) of independent and identically distributed gaussian variables.
Hence, γε(h) = 0 for any h 6= 0 (because of the independence assumption).

Classical models for times series are autoregressive models,

Yt = µ+ φ1Yt−1 + · · ·+ φpYt−p + εt

where (εt) is a white noise, i.e. a series of independent observation with 0 mean
and constant variance σ2. Introduction the lag operator L, such a process is
modeled as

Φ(L)Yt = εt

where Φ is a polynomial of order p. ARMA processes are obtained using also
lag operators on the white noise,

Φ(L)Yt = Θ(L)εt

5
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Some processes - with interesting features in environmental sciences - have
been introduced using the following formal extension of autoregressive pro-
cesses

(1− L)dYt = εt

where d ∈ (−1/2, 1/2), where

(1− L)d = 1 +
∞∑
j=1

d(d− 1) · · · (d− j + 1)

j!
(1−)jLj.

Those processes are called fractional processes (see e.g. Hurst (1951) or Man-
delbrot (1965)) and have long range dependence .

A stationary process (Yt)t∈Z is said to have long range dependence if

∞∑
h=1

|ρX(h)| =∞,

and short range dependence if not. Recall that stationary ARMA processes
have autocorrelations that are quickly decreasing, i.e. |ρ(h)| ≤ C · rh, for all
h = 1, 2, ... where r ∈]0, 1[ (see Section 3.6 in Brockwell & Davis (1991)).
This is the main reason why those processes are said to have short range
dependence: for small values of h, corr(Xt, Xt−h) can be relatively small (and
non-significant).

As pointed out in Smith (1993) about temperature, “we do not believe that the
autoregressive model provides an acceptable method for assessing theses uncer-
tainties”. Nevertheless, those models were encouraged by Nogaj et al. (2007)
where it is stated that the importance when studying extremal temperature
is not the dynamic, but the shape of the tails of the residuals. Hence, three
models will be compared here,

• an as a benchmark, a short range dependence model for (Yt), with a seasonal
effect, where the white noise is Gaussian
• a short range dependence model for (Yt), with a seasonal effect, where the

white noise εt has heavy tails,
• a Gaussian model for (Yt), with a seasonal effect, and long-range dependence

(the model described in the previous section).

3.2 A short range model with light tails (benchmark model)

Consider here a SARIMA process for (Yt), with a one-year seasonal cycle. If
L stands for the lag operator,

Φ(L)(1− Ls)(Yt) = Θ(L)(εt),

6
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with s = 365, where Φ and Θ are two polynomial, and where (εt) is a Gaussian
white noise, i.e. i.i.d. with εt ∼ N (0, σ2).

From a quick look at autocorrelations of the series, we have modeled (Yt)t∈Z
with a Gaussian SARMA(2,2) model. If Zt = Yt − Yt−365

Zt = 1.42
(0.0419)

Zt−1 − 0.473
(0.0322)

Zt−2 + εt − 0.658
(0.0419)

εt−1 − 0.103
(0.0075)

εt−2

where (εt)t∈Z has variance σ̂2 = 5.023. The remaining noise (εt)t∈Z satisfies the
white-noise assumption, and this model has the highest AIC. Nevertheless, the
distribution is far from being Gaussian, as shown on Figure 5.

3.3 A short range model with heavy tails

Here the dynamic remains unchanged, but the distribution of the noise is no
longer Gaussian, and has heavier tails (allowing for more extremal events).
Thus

Φ(L)(1− Ld)(Yt) = Θ(L)(εt),

where (εt) is a Student-t white noise, i.e. i.i.d. with εt ∼ Std(0, σ2, d), where
d denotes the number of degrees of freedom.

3.4 A long range model with light tails

The shape of the autocorrelation function and the periodogram (the empirical
version of the spectral density) on Figure 4 is similar to the one obtained on
daily windspeed by Bouëtte et al. (2006) (in response to Haslett & Raftery
(1989)). GARMA(p, d, q) processes were used to model those series. Recall
that this family of stochastic processes was introduced in Hosking (1981) as

Φ(L)(1− 2uL+ L2)dYt = Θ(L)εt,

where L is the lag operator, and d is not necessarily an integer. We will
consider here only GARMA(p, d) processes. Gegenbauer’s frequency, defined
as ω = cos−1(u), is closely related to the seasonality of the series. Here,
û = 2π/365 (because of the annual cycle of temperature). And for the ad-

ditional parameters, d̂ = 0.185, φ̂1 = 0.56, σ̂2 = 2.222. A further discussion of
GARMA processes can be found in Appendix 7.2.

7

ha
l-0

04
63

49
2,

 v
er

si
on

 1
 - 

12
 M

ar
 2

01
0



Daily minima in Paris − detrended (in °C)
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Fig. 4. Analysis of the series of residuals (Yt)t∈Z: series, autocorrelation (ρ̂(h)) func-
tion and smoothed periodogram f̂(x).

3.5 Discussion

Those GARMA processes have been considered on environmental applications
in Bouëtte et al. (2006) and Rocha Souza & Soares (1988).

3.6 Calibration of the models and discussion

Hence, three estimations are performed and outputs are presented in Table 1.
Recall that the density of the Student t distribution with ν degrees of freedom
is

fν(x) =
Γ((ν + 1)/2)√
νπΓ(ν/2)

(
1 +

x2

2

)−(ν+1)/2

.

4 Time stability of the stochastic model

A natural question that should be asked is the stationarity of the noise, i.e.
the series (Zt). In August 2006, the Washington Post headed that there were
“more frequent heat waves linked to global warming”. This was based on an
international study (Alexander et al. (2006)).
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φ̂1 φ̂2 θ̂1 θ̂2 σ̂2 logL AIC

Gaussian 1.4196
(0.0419)

−0.4733
(0.0322)

−0.6581
(0.0419)

−0.1032
(0.00752)

5.023 -97578.05 195168.1

t (ν = 20) 1.4191 -0.4738 -0.6571 -0.1032 5.023

t ( ν = 5 ) 1.4134 -0.4725 -0.6551 -0.1035 5.023

Table 1
Parameter estimation for the ARMA process, by maximum likelihood, with for the
Gaussian ARMA process the log-likelihood and Akaike’s AIC criteria.
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Fig. 5. QQ plot of the residuals series (εt)t∈Z, versus Gaussian and t-distribution
(with 5 degrees of freedom).

4.1 More and more extremes ?

In order to study extremal events, instead of looking at the average trends as
in 2, it could be interesting to focusing on a quantile regression. The slope
of different quantile regressions can be visualized on Figure 6, where we to
observe a slight change of the slope, confirming conclusions of most of the
other studies (Yan et al. (2002), Meehl & Tebaldi (2004), or Alexander et al.
(2006)).

To get a better understanding, we can focus on time- stability of the distribu-
tion of Yt, the distribution of the remaining noise (considered as Gaussian or
Student in the previous section) has been obtained on three period of time, on
Figure 7. Overall, the distribution looks rather the same. Further, if we focus
on upper tails (high nocturne temperatures) through quantiles (the temper-
ature reached by only the 5% highest values), we can also confirm that tails
are quite stable in time: we do observe more extremal event simply because
the average is increasing.
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Fig. 7. Estimation of the distribution of the noise (1905-1915, 1955-1965 and
1995-2005), and estimation of the upper 95% quantile .

4.2 Stability of the dynamics

Alexander et al. (2006) does not mention only extremal temperature, but also
that duration of period with extremal period has been increasing during the
XXth century. Again, this can be due to the linear trend, but we can also
wonder if this could also be explained by a change in persistence effects. Figure
8 compares the evolution of two quantities during the XXth century. On the
left is plotted the first order autocorrelation of the noise (r(Xt, Xt−1)), and
on the right, the evolution of the fractional index d in the fractional process.
On the two figures, we can conclude that there is no structural change in the
dynamics of the residual series.
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Fig. 8. First order autocorrelation of the noise (r(Xt, Xt−1)) and estimation of the
fractional index d.

5 Return period for two scenarios

Two scenarios on the future evolution of the linear trend will be considered in
this section:

• an optimistic scenario, where we assume that there will be no more increas-
ing trend in the future,
• a pessimistic scenario, where we assume that the trend will remain, with

the same slope.

Those scenarios are obviously extremely simplistic, but not irrelevant, as men-
tioned in Section 2.

5.1 Definition of the heat wave

In order to compare the two models, two alternative definitions of the heat
wave will be considered (both may characterize the phenomena of the begin-
ning of August in Paris),

• during 11 consecutive days, the temperature was higher than 19◦ C (type
(A)),
• during 3 consecutive days, the temperature was higher than 24◦ C (type

(B)).

The first definition of the heatwave (11 days) is closely related to the common
perception in France, since Météo France and most of the media have been
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communicating on this basis. The second one is based on Pirard et al. (2005):
most of the deaths have occurred during those 3 days.

5.2 Estimation of the return period

Here 10, 000 simulations over 300 years have been used to estimate the return
period. Depending on the definition of the heatwave, two different models
arise. When studying extreme temperatures on a short period, one should get
an accurate model for the noise (and the Gaussian standard model always
underestimate the return period). But in the case of high temperature on
a longer period of time, the main issue is to get an accurate model for the
dynamics, in order not to underestimate persistence effects. Thus, long range
dependence models should be considered.

short memory short memory long memory

short tail noise heavy tail noise short tail noise

optimistic 88 years 69 years 53 years

pessimistic 79 years 54 years 37 years

Table 2
Periods of return (expected value, in years) before the next heat wave similar with
August 2003 (type (A)).

short memory short memory long memory

short tail noise heavy tail noise short tail noise

optimistic 115 years 59 years 76 years

pessimistic 102 years 51 years 64 years

Table 3
Periods of return (expected value, in years) before the next heat wave similar with
August 2003 (type (B)).

Remark 1 Recall that with a return period of 50 years, there is 1 chance out
of 5 to have a heatwave (of type (B)) at least within the next 10 years, and 1
out of 3 within the next 20 years. With a return period of 35 years (type (A)),
there is 1 chance out of 4 to have a heatwave at least within the next 10 years,
and 1 out of 2 within the next 20 years.

Hence, our previous study based on an estimation of the overall period in
order to forecast temperature in the XXIth century is valid.

The outputs of simulations can be visualized on Figures 9 and 10. The large
plain line is the result of GARMA processes simulations, i.e. long range depen-
dence, and Gaussian noise. The dotted line is the result of ARMA processes
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simulations, with a Student noise (heavier tails than the Gaussian, plotted
with a light gray line).

Comparing optimistic versus pessimistic scenarios, note that for pessimistic
scenarios, the likelihood to have soon such an extremal event is larger. Further,
we can observe that with short range dependence and heavy tailed noise, the
event which is more likely to occur soon is the scenario of 3 days exceeding 24◦

C. On the other hand, with long range dependence, the event which is better
described is the scenario of 11 consecutive days with temperature higher than
19◦ C.

6 Conclusion

Changes in temperature over the XXth century has been pointed out by many
researchers. The global warming impact can be seen on the linear trend of the
daily temperature from 1900 till 2005. But an important fact is that it had
no influence on the residual series: there is no stronger temporal dependence,
and tails are not heavier: the residual series is stationary, and thus, estimated
return period are relevant.

Based on this first observations, we have modeled the series of minimal daily
temperature in Paris (since it is the series that helps to explain the high num-
ber of casualties due to 2003’ heat wave). Two models have been considered:
the first one with heavy tails for the residual series (t-distribution instead
of the standard Gaussian model), and the second one with persistence (and
stronger temporal dependence, between date t and t + h). Using those two
models, the return period of 2003’ heat wave has been estimated. For the long
period heat wave, a return period of 50 years can be expected, if urban pol-
lution can be monitored (and the linear trend stropped), but if not, it should
be shorter (35 years). In the second case (a shorter one, but with higher tem-
perature: the scenario which caused thousands of deaths), the return period
should be also 50 years. Even if those are somehow large (even it means that
there is 1 chance out of 5 to have one within the next 10 years), it is much
shorter than the centennial event, as claimed by medias.
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Fig. 9. Survival distributions and densities of time before the next heat wave event,
when heat wave is 11 consecutive days with temperature higher than 19◦ C, on the
left, and 3 consecutive days with temperature higher than 24◦ C, on the right. We
assume no more linear trend in the future (optimistic scenario).

7 Technical Appendix

7.1 Estimation of the trend of a nonstationary series

Estimating the linear trend of a statistical sample is usually a trivial problem,
but here, several difficulties may arise, due to the effect of (possible) long range
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Fig. 10. Survival distributions and densities of time before the next heat wave event,
when heat wave is 11 consecutive days with temperature higher than 19◦ C, on the
left, and 3 consecutive days with temperature higher than 24◦ C, on the right. We
keep the linear trend in the future (pessimistic scenario).

dependence .

Hence, if γX(·) denotes the autocovariance function of a stationary process
(Xt)t∈Z ,

V ar(Xn) =
γX(0)

n
+

2

n

n−1∑
k=1

(
1− k

n

)
γ(k),

where Xn is the standard empirical mean of a sample {X1, ..., Xn} (see Brock-
well & Davis (1991), or Smith (1993)). Furthermore, if autocovariance function
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satisfies γ(h) ∼ a · h2d−1 as h→∞, then

V ar(Xn) ∼ a

d(2d− 1)
· n2d−2,

as derived in Samarov-Taqqu(1988). And further, the ordinary least squares
estimator of the slope β (in the case where the Xi’s are regressed on some
covariate Y ) is still

β̂ =

∑
Xi(Yi − Y n)∑
(Yi − Y n)2

.

As shown in Yajima (1988), and more generally in Yajima (1991) in the case
of general regressors,

V ar(β̂) ∼ 36a(1− d)

d(1 + d)(2d+ 1)
· n2d−4.

7.2 Long range dependence processes: ARFIMA and GARMA

ARFIMA processes - as in introduced formally in Hosking (1981) - have the
following dynamics

Φ(L)(1− L)dYt = Θ(L)εt

where

(1− L)d =
∞∑
j=1

Γ(−d+ j)

Γ(−d)j!
Lj

where d ∈ (−1/2, 1/2). Those processes are stationary, and further its spectral
density satisfies

f(x) =
σ2

2π

[
2 sin

x

2

]−2d

∼ σ2

2π

1

x2d
as x→ 0.

Further

ρ(h) ∼ Γ(1− d)

Γ(d)
h2d−1 as h→∞.

Gray, Zhang & Woodward (1989) proposed an extension to model persistent
seasonal series, using Gegenbauer’s polynomial Gd

n(·), defined as

Gd
n(x) =

(−2)n

n!

Γ(n+ d)Γ(n+ 2d)

Γ(d)Γ(2n+ 2d)
(1− x2)−α+1/2 d

n

dxn

[
(1− x2)n+d−1/2

]
.

and such that Gd
n(·) is the unique polynomial of degree n such that

(1− 2uZ + Z2)d =
∞∑
n=0

Gd
n(u) · Zn.
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If d ∈ (0, 1/2), and |u| < 1 then

ρ(h) ∼ h2d−1 sin([π − arccos(u)]u) as h→∞.

Thus, this process has a seasonal behavior (with period u = cos
(
π

365

)
), and

persistence. See e.g. Bouëtte et al. (2006) for additional information and ref-
erences therein.
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