215,473 research outputs found
Neutralizing Grutter
Part I of this article argues that the Supreme Court lacks the institutional competence to formulate racial policy for the nation, and highlights the tension that exists between the Court\u27s abstract preference for race neutrality and the concrete reality of contemporary race relations, in which dedicated efforts to promote racial balance offer the only meaningful hope of eliminating systemic discrimination. Part II discusses moderate strategies that can be used to deflect the impact of Grutter’s prohibition on racial balance, suggesting that racial balancing can be restructured in ways that the Supreme Court may view as constitutional. Part III discusses more radical strategies that can be used to promote racial balance, and advocates a direct confrontation with the institution of judicial review in the context of affirmative action. The article concludes that the political branches of government possess the power to overcome Supreme Court impediments to racial justice, and hopes that they also possess the will to exercise that power
Phage display selection of HIV specific conserved mimotopes with IgG from long-term non-progressors
Poster presentation Background The aim of this study is to identify conserved epitopes of HIV-1 neutralizing antibodies in polyclonal plasma from LTNP to finally derive vaccine candidates. Materials and methods The presence of neutralizing antibodies in 9 LTNP sera was proved by in vitro neutralization assays. Phage displayed peptide libraries were screened with LTNP IgG. HIV-specific mimotopes were analyzed for homology to the gp120 structure by a software (3DEX) especially developed for this purpose. Mice were immunized with interesting phages and their sera were analyzed for neutralizing activities against HIV-1. Results After biopannings, between 19% and 75% HIV-specific phage clones were identified by ELISA. Mimotope sequences were identified and could be aligned by 3DEX to linear or conformational epitopes on gp120. A peptide specific immune response was detected in sera of immunized mice. The first mice sera analyzed showed neutralizing activities against HIV-1. Conclusion Mimotopes could be selected from LTNP sera that represent conformational epitopes on gp120. Those ones inducing neutralizing antibodies upon immunization potentially are suited to derive vaccine candidates
Kinetics of the neutralizing antibody response to respiratory syncytial virus infections in a birth cohort
The kinetics of respiratory syncytial virus (RSV) neutralizing antibodies following birth, primary and secondary infections are poorly defined. The aims of the study were to measure and compare neutralizing antibody responses at different time points in a birth cohort followed-up over three RSV epidemics. Rural Kenyan children, recruited at birth between 2002 and 2003, were monitored for RSV infection over three epidemic seasons. Cord and 3-monthly sera, and acute and convalescent sera following RSV infection, were assayed in 28 children by plaque reduction neutralization test (PRNT). Relative to the neutralizing antibody titers of pre-exposure control sera (1.8 log10 PRNT), antibody titers following primary infection were (i) no different in sera collected between 0 and 0.4 months post-infection (1.9 log10 PRNT, P = 0.146), (ii) higher in sera collected between 0.5 and 0.9 (2.8 log10 PRNT, P < 0.0001), 1.0–1.9 (2.5 log10 PRNT, P < 0.0001), and 2.0–2.9 (2.3 log10 PRNT, P < 0.001) months post-infection, and (iii) no different in sera collected at between 3.0 and 3.9 months post-infection (2.0 log10 PRNT, P = 0.052). The early serum neutralizing response to secondary infection (3.02 log10 PRNT) was significantly greater than the early primary response (1.9 log10 PRNT, P < 0.0001). Variation in population-level virus transmission corresponded with changes in the mean cohort-level neutralizing titers. It is concluded that following primary RSV infection the neutralizing antibody response declines to pre-infection levels rapidly (∼3 months) which may facilitate repeat infection. The kinetics of the aggregate levels of acquired antibody reflect seasonal RSV occurrence, age, and infection history
Neutralization of Diverse Human Cytomegalovirus Strains Conferred by Antibodies Targeting Viral gH/gL/pUL128-131 Pentameric Complex
Human cytomegalovirus (HCMV) is the leading cause of congenital viral infection, and developing a prophylactic vaccine is of high priority to public health. We recently reported a replication-defective human cytomegalovirus with restored pentameric complex glycoprotein H (gH)/gL/pUL128-131 for prevention of congenital HCMV infection. While the quantity of vaccine-induced antibody responses can be measured in a viral neutralization assay, assessing the quality of such responses, including the ability of vaccine-induced antibodies to cross-neutralize the field strains of HCMV, remains a challenge. In this study, with a panel of neutralizing antibodies from three healthy human donors with natural HCMV infection or a vaccinated animal, we mapped eight sites on the dominant virus-neutralizing antigen-the pentameric complex of glycoprotein H (gH), gL, and pUL128, pUL130, and pUL131. By evaluating the site-specific antibodies in vaccine immune sera, we demonstrated that vaccination elicited functional antiviral antibodies to multiple neutralizing sites in rhesus macaques, with quality attributes comparable to those of CMV hyperimmune globulin. Furthermore, these immune sera showed antiviral activities against a panel of genetically distinct HCMV clinical isolates. These results highlighted the importance of understanding the quality of vaccine-induced antibody responses, which includes not only the neutralizing potency in key cell types but also the ability to protect against the genetically diverse field strains. IMPORTANCE HCMV is the leading cause of congenital viral infection, and development of a preventive vaccine is a high public health priority. To understand the strain coverage of vaccine-induced immune responses in comparison with natural immunity, we used a panel of broadly neutralizing antibodies to identify the immunogenic sites of a dominant viral antigen-the pentameric complex. We further demonstrated that following vaccination of a replication-defective virus with the restored pentameric complex, rhesus macaques can develop broadly neutralizing antibodies targeting multiple immunogenic sites of the pentameric complex. Such analyses of site-specific antibody responses are imperative to our assessment of the quality of vaccine-induced immunity in clinical studies
Development and characterization of a human monoclonal antibody for prevention of HCV recurrence in liver transplant patients
More than 170 million people worldwide are chronically infected with hepatitis C virus (HCV) and are at risk of developing liver fibrosis, cirrhosis and hepatocellular carcinoma. Liver transplantation is the only option for patients with HCV-induced end-stage liver diseases. Nevertheless, infection of the newly grafted liver occurs immediately and universally after transplantation. Despite the recent progress in HCV therapy, a prophylactic vaccine is still not available. The role of neutralizing monoclonal antibodies (mAbs) in protection from different viral infections including HCV, HIV and Ebola has been reported. In the last few years, several mAbs with neutralizing activity have been described but only few mAbs have been evaluated in vivo. In the present study, we describe the development of a mAb, designated 2A5, isolated from HCV genotype 1b chronic patient. ELISA results indicated high affinity of mAb 2A5 towards HCV envelope glycoprotein (E1E2). The binding activity was completely lost against denatured E1E2 protein indicating that it targets a conformational epitope within the envelope region. Epitope mapping using alanine mutants of E1E2 proteins defined critical binding residues within the regions 419-447 and 612-617. Results of pseudoparticles (HCVpp) and cell culture produced virus (HCVcc) neutralization showed broad neutralizing activity of mAb 2A5 against all HCV genotypes. The efficacy study of mAb 2A5 in immune-deficient mice of which the liver is repopulated with human hepatocytes (humanized mice) showed complete protection from HCV challenge for genotypes 1a and 4a, while partial protection was achieved for genotypes 1b and 6a. Sequence analysis of E1E2 protein from non-protected mice did not revealed resistance mutations at interaction residues of mAb 2A5. In conclusion, mAb 2A5 shows potent anti-HCV neutralizing activity both in vitro and in vivo and could hence provide an effective strategy to prevent HCV recurrence in chronically infected HCV liver transplant patients. In addition, the broad neutralizing activity of this mAb presents a valuable epitope for the design of HCV vaccine with cross-protection activity
Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques.
Broadly neutralizing monoclonal antibodies protect against infection with HIV-1 in animal models, suggesting that a vaccine that elicits these antibodies would be protective in humans. However, it has not yet been possible to induce adequate serological responses by vaccination. Here, to activate B cells that express precursors of broadly neutralizing antibodies within polyclonal repertoires, we developed an immunogen, RC1, that facilitates the recognition of the variable loop 3 (V3)-glycan patch on the envelope protein of HIV-1. RC1 conceals non-conserved immunodominant regions by the addition of glycans and/or multimerization on virus-like particles. Immunization of mice, rabbits and rhesus macaques with RC1 elicited serological responses that targeted the V3-glycan patch. Antibody cloning and cryo-electron microscopy structures of antibody-envelope complexes confirmed that immunization with RC1 expands clones of B cells that carry the anti-V3-glycan patch antibodies, which resemble precursors of human broadly neutralizing antibodies. Thus, RC1 may be a suitable priming immunogen for sequential vaccination strategies in the context of polyclonal repertoires
Expression of the murine cytomegalovirus glycoprotein H by recombinant vaccinia virus
The sequence of the gene encoding glycoprotein H (gH) of murine cytomegalovirus (MCMV) strain Smith was determined and compared with the sequence of the gH of MCMV strain K181. Transcriptional analysis showed that gH is encoded by a large mRNA of 5.0 kb, which is synthesized late in infection. A recombinant vaccinia virus expressing the MCMV gH open reading frame was constructed (Vac-gH). Anti-MCMV serum precipitated a protein of 87K from Vac-gH-infected cells. Reactivity with a monoclonal antibody showed the identity of the MCMV gH with a 87K envelope glycoprotein described previously by Loh and Qualtiere. Immunization of mice with the Vac-gH recombinant gave rise to an anti-gH serum, which neutralized MCMV without complement in vitro
- …
