1,158 research outputs found
Multi-criteria Evolution of Neural Network Topologies: Balancing Experience and Performance in Autonomous Systems
Majority of Artificial Neural Network (ANN) implementations in autonomous
systems use a fixed/user-prescribed network topology, leading to sub-optimal
performance and low portability. The existing neuro-evolution of augmenting
topology or NEAT paradigm offers a powerful alternative by allowing the network
topology and the connection weights to be simultaneously optimized through an
evolutionary process. However, most NEAT implementations allow the
consideration of only a single objective. There also persists the question of
how to tractably introduce topological diversification that mitigates
overfitting to training scenarios. To address these gaps, this paper develops a
multi-objective neuro-evolution algorithm. While adopting the basic elements of
NEAT, important modifications are made to the selection, speciation, and
mutation processes. With the backdrop of small-robot path-planning
applications, an experience-gain criterion is derived to encapsulate the amount
of diverse local environment encountered by the system. This criterion
facilitates the evolution of genes that support exploration, thereby seeking to
generalize from a smaller set of mission scenarios than possible with
performance maximization alone. The effectiveness of the single-objective
(optimizing performance) and the multi-objective (optimizing performance and
experience-gain) neuro-evolution approaches are evaluated on two different
small-robot cases, with ANNs obtained by the multi-objective optimization
observed to provide superior performance in unseen scenarios
Enhancing competitive island cooperative neuro - evolution through backpropagation for pattern classification
Cooperative coevolution is a promising method for training neural networks which is also known as cooperative neuro-evolution. Cooperative neuro-evolution has been used for pattern classification, time
series prediction and global optimisation problems. In the past, competitive island based cooperative coevolution has been proposed that employed different instances of problem decomposition methods for competition. Neuro-evolution has limitations in terms of training time although they are known as global search methods. Backpropagation algorithm employs gradient descent which helps in faster convergence which is needed for neuro-evolution. Backpropagation suffers from premature convergence and its combination with neuro-evolution can help eliminate the weakness of both the approaches. In this paper, we propose a competitive island cooperative neuro-evolutionary method that takes advantage of the strengths of gradient descent and neuro-evolution. We use feedforward neural networks on benchmark pattern classification problems to evaluate the performance of the proposed algorithm. The results show
improved performance when compared to related methods
EDEN: Evolutionary Deep Networks for Efficient Machine Learning
Deep neural networks continue to show improved performance with increasing
depth, an encouraging trend that implies an explosion in the possible
permutations of network architectures and hyperparameters for which there is
little intuitive guidance. To address this increasing complexity, we propose
Evolutionary DEep Networks (EDEN), a computationally efficient
neuro-evolutionary algorithm which interfaces to any deep neural network
platform, such as TensorFlow. We show that EDEN evolves simple yet successful
architectures built from embedding, 1D and 2D convolutional, max pooling and
fully connected layers along with their hyperparameters. Evaluation of EDEN
across seven image and sentiment classification datasets shows that it reliably
finds good networks -- and in three cases achieves state-of-the-art results --
even on a single GPU, in just 6-24 hours. Our study provides a first attempt at
applying neuro-evolution to the creation of 1D convolutional networks for
sentiment analysis including the optimisation of the embedding layer.Comment: 7 pages, 3 figures, 3 tables and see video
https://vimeo.com/23451009
Hierarchical Temporal Representation in Linear Reservoir Computing
Recently, studies on deep Reservoir Computing (RC) highlighted the role of
layering in deep recurrent neural networks (RNNs). In this paper, the use of
linear recurrent units allows us to bring more evidence on the intrinsic
hierarchical temporal representation in deep RNNs through frequency analysis
applied to the state signals. The potentiality of our approach is assessed on
the class of Multiple Superimposed Oscillator tasks. Furthermore, our
investigation provides useful insights to open a discussion on the main aspects
that characterize the deep learning framework in the temporal domain.Comment: This is a pre-print of the paper submitted to the 27th Italian
Workshop on Neural Networks, WIRN 201
Finding Competitive Network Architectures Within a Day Using UCT
The design of neural network architectures for a new data set is a laborious
task which requires human deep learning expertise. In order to make deep
learning available for a broader audience, automated methods for finding a
neural network architecture are vital. Recently proposed methods can already
achieve human expert level performances. However, these methods have run times
of months or even years of GPU computing time, ignoring hardware constraints as
faced by many researchers and companies. We propose the use of Monte Carlo
planning in combination with two different UCT (upper confidence bound applied
to trees) derivations to search for network architectures. We adapt the UCT
algorithm to the needs of network architecture search by proposing two ways of
sharing information between different branches of the search tree. In an
empirical study we are able to demonstrate that this method is able to find
competitive networks for MNIST, SVHN and CIFAR-10 in just a single GPU day.
Extending the search time to five GPU days, we are able to outperform human
architectures and our competitors which consider the same types of layers
- …
