365,754 research outputs found

    Evolvable synthetic neural system

    Get PDF
    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy

    Deep Spiking Neural Network model for time-variant signals classification: a real-time speech recognition approach

    Get PDF
    Speech recognition has become an important task to improve the human-machine interface. Taking into account the limitations of current automatic speech recognition systems, like non-real time cloud-based solutions or power demand, recent interest for neural networks and bio-inspired systems has motivated the implementation of new techniques. Among them, a combination of spiking neural networks and neuromorphic auditory sensors offer an alternative to carry out the human-like speech processing task. In this approach, a spiking convolutional neural network model was implemented, in which the weights of connections were calculated by training a convolutional neural network with specific activation functions, using firing rate-based static images with the spiking information obtained from a neuromorphic cochlea. The system was trained and tested with a large dataset that contains ”left” and ”right” speech commands, achieving 89.90% accuracy. A novel spiking neural network model has been proposed to adapt the network that has been trained with static images to a non-static processing approach, making it possible to classify audio signals and time series in real time.Ministerio de Economía y Competitividad TEC2016-77785-

    Investigating the generalizability of EEG-based Cognitive Load Estimation Across Visualizations

    Full text link
    We examine if EEG-based cognitive load (CL) estimation is generalizable across the character, spatial pattern, bar graph and pie chart-based visualizations for the nback~task. CL is estimated via two recent approaches: (a) Deep convolutional neural network, and (b) Proximal support vector machines. Experiments reveal that CL estimation suffers across visualizations motivating the need for effective machine learning techniques to benchmark visual interface usability for a given analytic task

    State Variables of the Arm May Be Encoded by Single Neuron Activity in the Monkey Motor Cortex

    Get PDF
    Revealing the type of information encoded by neurons activity in the motor cortex is essential not only for understanding the mechanism of motion control but also for developing a brain-machine interface. Thus far, the concept of preferred direction vector (PD) has dominated the discussion regarding how neural activity encodes information; however, a unified view of exactly what information is encoded has not yet been established. In the present study, a model was constructed to describe temporal neuron activity by a dot product of the PD and the movement variables vector consisting of joint torque and angular velocity. The plausibility of this model was tested by comparing estimated neural activity with that recorded from the monkey motor cortex, and it was found that this model was able to explain the temporal pattern of neuron activity irrespective of its passive responsiveness. The mean determination coefficients of neurons that responded to proprioceptive stimuli and that responded to visual stimuli were relatively high values of 0.57 and 0.58, respectively. These results suggest that neurons in the monkey motor cortex encode state variables of the arm in a framework of modern control theory and that this information could be decoded for controlling a brain-machine interface
    corecore