
Deep Spiking Neural Network model for
time-variant signals classification: a real-time

speech recognition approach

Juan P. Dominguez-Morales1, Qian Liu2, Robert James2, Daniel Gutierrez-Galan1,
Angel Jimenez-Fernandez1, Simon Davidson2, and Steve Furber2

1Robotics and Computer Technology Lab.

University of Seville, Seville, Spain

Email: jpdominguez@atc.us.es
2Advanced Processor Technologies Group, School of Computer Science.

University of Manchester. Manchester, UK

Abstract—Speech recognition has become an important task
to improve the human-machine interface. Taking into account
the limitations of current automatic speech recognition systems,
like non-real time cloud-based solutions or power demand,
recent interest for neural networks and bio-inspired systems has
motivated the implementation of new techniques.

Among them, a combination of spiking neural networks and
neuromorphic auditory sensors offer an alternative to carry
out the human-like speech processing task. In this approach,
a spiking convolutional neural network model was implemented,
in which the weights of connections were calculated by training
a convolutional neural network with specific activation functions,
using firing rate-based static images with the spiking information
obtained from a neuromorphic cochlea.

The system was trained and tested with a large dataset
that contains ”left” and ”right” speech commands, achieving
89.90% accuracy. A novel spiking neural network model has been
proposed to adapt the network that has been trained with static
images to a non-static processing approach, making it possible
to classify audio signals and time series in real time.

Index Terms—speech recognition, audio processing, Spiking
Neural Networks, Convolutional Neural Networks, neuromorphic
hardware, deep learning.

I. INTRODUCTION

Voice commands are commonly used in multiple personal

virtual assistants [1], like Cortana in Microsoft Windows, or

Siri in iOS. Users are able to control their personal computers

or mobile phones by using natural language sentences, like

”Remind me to call Robert in the afternoon”, or more directly,

”Call Robert”. This kind of assistants are based on a field of

Artificial Intelligence (AI) called Natural Language Processing

(NLP) to identify what the user is saying [2], [3]. The audio is

processed and analyzed using Digital Signal Processing (DSP)

techniques, such as speech processing [4].

Speech recognition is the interdisciplinary sub-field of

speech processing, in which spoken sentences are recognized

and translated to text (or other data representation) using

specific methodologies. Typically, these methods identify each

spoken word in isolation, applying several processing steps to

obtain features that are then mapped to a specific word [5].

In recent years, the application of Artificial Neural Network

(ANN) to this field has become commonplace. Notably,

the combination of Recurrent Neural Networks (RNNs) and

Convolutional Neural Networks (CNNs) has led to significant

progress in developing human-machine interface, as in [6],

[7], [8], [9]. Recently, the Google WaveNet system [10]

demonstrated significantly improved comprehension of entire

conversations as well as being able to generate human-like

speech from text, based on a CNN trained on raw audio voice

characterization.

Training CNNs is a relatively easy task. There exist several

frameworks and training mechanisms to achieve this. The most

used training algorithm (for ANN and CNN training) is the

well-known Levenberg-Marquardt back-propagation algorithm

[11]. In contrast, there is no established standard training

algorithm for Spiking Neural Networks.

Spike-Time-Dependant Plasticity (STDP) is a biological

process that is able to adjust the strength (weights) of the

connections between neurons based on the relative timing

of a particular neuron’s output and input spiking activity.

This process has been implemented in several simulators

and hardware platforms, including SpiNNaker [12], and has

become one of the most ubiquitous approaches for training

spike-based networks especially for unsupervised learning

[13]. STDP has proved to be very useful and robust for static

input signals like images [14], [15], but it is more difficult to

apply when it comes to processing time-varying signals such

as audio samples.

As an alternative to STDP, the weights of the connections

between neurons in a network could be set by hand or based

on particular statistical algorithms. This approach was taken

into account in papers like [16], in which the authors set the

weights using two different firing-rate based normalizations

for classifying between eight different pure tones. This option

is complex because it generally needs several trial-and-error

loops in order to find the best weight configuration, which can

take a long time. Also, this way of setting the weights of the

connections is too task specific and lacks the generality and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/286563118?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Analog Audio CS5343
A/D

Converter

I2S
FSM

L – Cochlea Filter
Bank (L-CFB)

L - Synthetic
Spikes

Generator

...

BPF_L_HF

BPF_L_LF

R – Cochlea Fi lter
Bank (R-CFB)

R - Synthetic
Spikes

Generator

...

BPF_R_HF

BPF_R_LF

L-Data

R-Data

I2S

FPGA

AER
Monitor AER

REQ

ACK

...

Spikes_L_0

Spikes_L_N

Spikes_R_0

Spikes_R_N
...

Digital Audio Spikes

32

32
Right

Left
Analog Audio

BUS

AER
to

SpiNN
Driver

7

ACK from
SpiNNaker

2of7 AER events

AER

Fig. 1: Neuromorphic Auditory Sensor (NAS) block diagram.

biological plausibility of STDP.

Due to the increasing interest in SNNs, numerous works

have tried to develop new frameworks or methods to

automatically train SNN models. The first approach is to

develop new STDP-based algorithms, as in [17], who used

the force firing technique for incremental learning, making it

possible to learn new patterns continually in real-time using

an unsupervised learning procedure. Also, in [18], the authors

used a new learning rule, named fatiguing STDP, which

combines the long-term STDP dynamics with a mechanism

of short-term synaptic fatigue dynamics.

There are many other bio-inspired techniques for training

neural models, such as the use of evolutionary algorithms [19]

to adjust the weights of the network.

In recent time, the difference in classification error between

deep SNNs and deep ANNs has diminished significantly [20].

These exciting results suggest that, if trained appropriately,

an SNN can be used for machine learning inference without

introducing penalties in data classification accuracy. Using a

deep SNN instead of a deep ANN alternative can provide a

machine learning system with power saving and input noise

tolerance benefits [21].

Additionally, such deep SNNs can be trained on input

data generated from a neuromorphic spiking sensor device,

unlocking the potential for a real-time inference system on

a spiking neuromorphic platform [22]. We believe that only

when these are combined the true strengths of a fully spike-

based processing system will be apparent.

The aforementioned developments in deep SNNs show

accurate classification of static input data (images) using a

deep convolutional SNN. We show in this work that we are

able to train a similarly structured network on time series

input data from a Neuromorphic Auditory Sensor (NAS) [23]

produced from a range of sound inputs. By using a technique

of generating a training dataset consisting of many overlapping

‘snapshots’ of the NAS output and a ‘time-buffering’ input to

the SNN, we are able to produce a robust inference on time

varying spiking inputs.

The rest of the paper is structured as follows: section II

presents an overview of the system architecture and the speech

commands database that was used in this work along with

how the train and test datasets were generated. Then, section

III describes the whole framework that was used to train and

simulate the SNN with the audio samples dataset that was

obtained from the previous section. Then, section IV describes

the results of both the training and the simulation. Up to this

point, this setup is used for training and testing the system

with static inputs (audio samples are converted into images),

so in section V we propose a novel SNN architecture to use

the network that was previously trained with static data in real

time using a live input from a neuromorphic cochlea. Finally,

the conclusions of this work are presented in section VI.

II. SYSTEM OVERVIEW, DATASET ACQUISITION AND

PREPROCESSING OF THE INFORMATION

In audio processing, a Digital Signal Processor is usually

used to carry out large audio processing tasks, due to the

computational capabilities of these devices. The neuromorphic

approach uses bio-inspired devices that mimic the behavior

of biological senses, reproducing with greater fidelity the

individual steps by which the ear and the auditory cortex

interact to process aural information.

In recent years, several researchers have developed theo-

retical cochlea models, using either analog or digital circuits

to implement their models. As a result, many neuromorphic

hardware platforms have appeared and are being used in

research projects. There exist several models of analog [24]

[25] [26] and digital cochleae [27] [28] [29] [30].

In this work we use a Neuromorphic Auditory Sensor

[23] (NAS), which is a digital cochlea implementation. It

is a FPGA-based sensor, in which all processing modules

are spike-based. As it is implemented on a reconfigurable

platform, this sensor’s configuration parameters are flexible

and can be adapted to any application.

This kind of sensors mimic how the biological cochlea

processes audio signals. The cochlea is able to decompose

the input audio signal into different frequency bands (also

called channels). This decomposition is carried out by a series

of cascade-connected stages that subtract the information

from consecutive spike-based low-pass filters’ output spikes in

order to reject out-of-band frequencies, obtaining a response

equivalent to that of a bandpass filter [23]. The entire NAS

architecture is shown in Fig. 1. A flow of spikes coded as

AER (Address-Event Representation) [31] events is obtained

in the output, which can be either sent to the SpiNNaker board

USBAERmini2

Xilinx JTAG

16-bit AER bus

AER-Node

USB port

Analog
audio

I2S
audio
codec

SpiNNaker
connector

Left/Right audio
recordings

PC

Analog
audio

I2S ADC
(96KHz 24 bits)

Spartan-6 FPGA

NASDigital
audio

USBAERmini2
USB

AER

AEDAT files

AER-Node board

AER events
(address + timestamp)

AER req

AER ack

Matlab

Fig. 2: Picture (top) and block diagram (bottom) of the

hardware setup for the dataset generation.

through the AER-SpiNNaker interface module [32] or to the

computer using a USBAERmini2 board [33].

A 32-channel mono-aural NAS was used in this work,

employing this neuromorphic approach in a speech recognition

task where spoken commands corresponding to the words

”left” and ”right” are classified. The Speech Command dataset,

which consists of 65000 one-second long utterances of 30

short words, was used in this work. This data was collected

by Google and released under a Creative Commons BY 4.0

license. Only the ”left” and ”right” voice commands of the

dataset (a total of 4720 audio files from thousands of different

speakers) were used in this work, since one of the final goals

of the COFNET project is to drive a robot by using only these

two voice commands.

Each of the audio samples were sent to the audio input

of an AER-Node platform [34], which consists of a Spartan-6

FPGA in which a 32-channel mono-aural NAS is programmed.

With this sensor the audio signal is decomposed into frequency

bands and then packetized using the Address-Event Represen-

tation protocol (AER). An USBAERmini2 board receives this

information and sends it to the computer through the USB

port. A MATLAB script is used to collect the AER packets

that are received through the serial port and to store them into

AEDAT1 files (one file is generated per audio sample), which

is a common format used for storing this kind of information.

The hardware setup used for generating the dataset is shown

in Fig. 2.
These AEDAT files were then converted to sonogram

images using NAVIS’s algorithms [35] in order to train a

CNN. To do this, a bin width of 20 ms was selected in order

to calculate the firing rate for each of the NAS’ channels in

every bin. This was done by counting the number of spikes

fired in that portion of time and dividing that value by 20 ms

(see Algorithm 1), which is the length that was selected for

this work. Fig. 3 shows images from both the ”left” and the

”right” classes after this process was carried out. In order to

make the training of the network more robust to a real scenario,

in which the core information of the audio could be presented

not only in the center of the image but in any position of it,

an overlapping shifting window was used, generating several

images for each audio sample with the information centered

in different timestamps.

Algorithm 1 Sonogram calculation

1: bin width = 20 ms
2: sonogram = zeros(max(in addr), max(in timeStamp)/bin width)
3: for i=1:max(in addr) do
4: sonogram(in addr(i), in tStamp(i)/bin width)++
5: end for
6: sonogram = sonogram/bin width

A total of 141726 images were generated in this process,

121565 of which were used to train the network and the

remaining 20161 images to test it and obtain the accuracy

ratio of the system.

III. OFF-LINE SNN TRAINING AND SNN CONSTRUCTION

The general off-line SNN training method proposed by Liu

et. al. [36] is based on two novel activation functions. One

is Noisy Softplus (NSP) [20], which closely mimics the LIF

firing activity driven by current influx with different noise

levels. The other, Parametric Activation Function (PAF), maps

abstract numerical numbers of activation functions to specific

physical units of a spiking neuron. Thus, the combination

provides an equivalent representation of a spiking LIF neuron

with abstract activation functions of ANNs. PAF allows using

more generalized activation functions (e.g., ReLU instead of

NSP) to model a LIF neuron once its parameters are fitted by

NSP. Therefore, the weights of a SNN can be trained off-line

on an equivalent ANN exactly the same way as conventional

ANNs (e.g., using Backpropagation and Stochastic Gradient

Descent), but using PAFs. The simple steps can be described as

follows: firstly, estimate the parameter of PAFs; then, train an

equivalent ANN using the PAF version of the activation func-

tions (e.g., PAF-ReLU); finally, transfer the trained weights

back to the SNN without further transformation.
The off-line SNN training tool is published in Github2. It

is comprised of two main parts: the Matlab code for ANN

1https://inilabs.com/support/software/fileformat
2https://github.com/qian-liu/off line SNN

LEFT

N
AS

 c
ha

nn
el

bin nº (20 ms each)

0

63

10

20

30

40

50

0 633010 20 40 50

RIGHT

N
AS

 c
ha

nn
el

bin nº (20 ms each)

0

63

10

20

30

40

50

0 633010 20 40 50

100

200

300

400

500

600

700

800

900

1000

sp
ik

es
 p

er
 se

co
nd

100

200

300

400

500

600

700

800

900

1000

sp
ik

es
 p

er
 se

co
nd

Fig. 3: Sonogram images corresponding to one ”Left” (top)

and one ”Right” (bottom) audio samples from the Speech

Command dataset after obtaining their spiking information

from the NAS.

training and the Python code for reading trained weights and

translating into PyNN language. The Matlab code is based

on an ANN training tool called DeepLearnToolbox3, and we

implemented the two activation functions described above. It is

worth noting that the NSP and its derivative takes two variables

as inputs: the mean of the noisy current x and its variance σ.

Therefore, the computation of both the forward and backward

paths are doubled and the state to be stored is also doubled

in size. The PAF is easily implemented by multiplying the

parameter p of the original activation function: p× f(x).
The Python code reads the network architecture of an ANN

layer-by-layer, and constructs equivalent populations of LIF

neurons accordingly. It then takes the layer-wise weights of

the ANN and translates them to the connection list between

populations of LIF neurons. After the building-up phase,

the testing code (which is simulated in NEST) generates

Poisson Spike trains based on parameter configurations and

3https://github.com/rasmusbergpalm/DeepLearnToolbox

the intensity of pixels of an input image; then, it feeds the

network with the spike trains and records the output spike

trains on the classification layer; finally, it analyses the results

where the highest firing rates determine the class to which

an image is assigned. The overall performance on the whole

testing dataset is then compared with the ANN testing result.

IV. RESULTS

A 5C-3P-3C-2P Spiking Convolutional Neural Network

(5x5 kernel-size convolutional layer followed by a 2x2 pool-

ing layer, another 3x3 convolutional layer followed by a

2x2 pooling layer, and then a fully connected layer) was

trained in Matlab with rate-based sonograms (See Fig. 3) that

contained the firing rate information obtained from a NAS

using ”left” and ”right” speech commands from a well-known

open database that was presented in section II. The CNN

architecture is shown in Fig. 4.

An accuracy result of 92.21% was achieved when training

the CNN in Matlab for 30 epochs, at a learning rate value

of 0.1 and a synaptic time constant of 0.005 ms, using the

ReLU activation function on the fully connected layer. After

this, the network was fine-tuned for one more epoch with

the Noisy Softplus activation function that was described in

section III, starting off with the weights of the connections

that were obtained from the previous step (using ReLU as the

activation function).

After the fine-tuning process, the performance of the

network was almost the same, obtaining 90.80% accuracy. As

was explained in previous sections, the trained weights were

tweaked (fine-tuned) in this process, resulting on a slightly

lower accuracy value in this case (less than 2% decrease), but

improving the performance when translating from the ANN in

Matlab to a SNN in pyNN (NEST).

The weights obtained from the ANN training and fine-

tuning in Matlab were then saved and used to test a SNN.

The SNN was built in pyNN for the NEST simulator based

on the architecture of the ANN that was trained in the previous

step. The network was tested using 20161 samples, achieving

89.90% accuracy (the confusion matrix is shown in Fig. 5).

As can be observed, the result obtained in the ”left”/”right”

classification in the SNN simulation that was run on NEST is

almost the same as the one that was obtained when training the

ANN in Matlab, meaning that, with this process, the authors

have found a proper way to train audio signals (or time series)

without compromising the accuracy of the network.

Tests were carried out using the NEST simulator and also

deploying the whole SNN model in a 48-chip SpiNNaker

hardware platform. In future works, the authors would be fo-

cusing on making use of the NAS-SpiNNaker live connection

[37] to test the speech commands recognition using a real-

time input from a microphone connected to the NAS. The

next section will describe the SNN architecture for testing this

approach in real-time.

Fig. 4: CNN architecture used for training the ”left”/”right” commands in Matlab.

9114
45.21%

1003
4.97%

10117
90.08%
9.92%

1032
5.12%

9012
44.70%

10044
89.72%
10.28%

10146
89.83%
10.17%

10015
89.99%
10.01%

20161
89.90%
11.10%

Left

Right

Left Right
Actual value

Pr
ed

ict
ed

 va
lu

e

Fig. 5: Confusion matrix of the SNN test using 20161 samples

(10117 ”left” and 10044 ”right” samples).

V. SNN ARCHITECTURE FOR AUDIO SAMPLES

CLASSIFICATION IN REAL TIME

The accuracy result of the system achieved when using the

method described in section III proves that this mechanism

could be used to classify audio samples like the ones used in

this work or even more complex ones as long as they can be

converted into images.

This is a completely offline approach, which means that

audio samples are not being inputted in real time. These

samples have to be already recorded and converted into spikes

in order to classify them. The point on using the NAS is that,

besides of processing the sound information in a bio-inspired

way, it is able to provide a real time output with the audio

signal decomposed into frequency bands (32 bands or cochlea

channels in this case) and already converted into spikes, as the

biological cochlea would do.

Even when not making use of the real-time capabilities of

this neuromorphic sensor, using it could be useful for tasks

in which the classification does not need to be done in a

short period of time. In [38], Dominguez-Morales et al. use a

NAS to process heart sounds recordings and classify whether

it is a healthy person or a pathological patient in order to

help cardiologists in the auscultation process. Applications like

this do not require an immediate output from the classifier,

meaning that the sound could be recorded and analyzed later.

However, in tasks like robot navigation with speech com-

mands, recognizing the command and acting on the motors of

the robot are actions that need to be done as soon as possible.

Otherwise, the navigation would not feel fluid and natural. One

of the main goals of the COFNET project (TEC2016-77785-P)

is to drive a 4-wheel SUMMIT XL robot from Robotnik using

the fusion of the neuromorphic information coming from a

neuromorphic retina (Dynamic Vision Sensor) and from a NAS

(using speech commands). To accomplish this while using the

same training approach considered in this work, the authors

propose the SNN architecture shown in Fig. 6.

This architecture takes into account that the input data

has been trained using a deep Spiking Convolutional Neural

Network (SCNN) as it was a static input (image). That is, the

image is converted from a matrix (two-dimensional array) to a

single dimension array by flattening the matrix (e.g. a 28x28

MNIST image is converted to an array of 768 elements). The

whole trained SCNN is presented in the figure in a cloud

shape. To adapt the trained model in order to use real-time

input from the NAS, a new layer of spiking populations has

to be added.

These populations act as a layer between the NAS and the

trained SCNN and its goal is to adapt the spiking information

that comes out of the NAS in real time in order to serve as

input to the network. This is done by having 64 populations

(due to the fact that the network is trained with 64 20 ms-bins

images) of 64 neurons each (two neurons per NAS channel)

that are connected like a daisy chain, with delayed one-to-

one connections between every two. The delay that is set for

these connections is 20 ms, because of the bin width used.

NAS’s output is connected to the first of these populations,

propagating the same spiking information to the next one

after 20 ms. Then, each of the 64 populations of this layer

is connected to the previously trained SCNN with no delay.

This way, as soon as the speech command is sent to the NAS,

the populations between the NAS and the SCNN will start to

NAS

32
channels

64 n

64 n

64 n

64 n

Trained SCNN
64 neurons

0

63 LEFT

RIGHT

64 neurons x 64 populations

20ms delay

20ms delay

20ms delay

20ms delay

LEFT

NA
S

ch
an

ne
l

bin nº (20 ms each)

0

63

10

20

30

40

50

0 633010 20 40 50

Delayed connection Non-delayed connection Output

Fig. 6: Real-time NAS audio input SCNN scenario with a buffering layer consisting of a set of delayed populations.

propagate the information. This ”time-buffered” architecture

allows to run real-time experiments for speech recognition and

audio samples classification with a previous step of training

the network with static audio images, which is a novelty in

the neuromorphic engineering field. Having several images

for the same speech command with the information shifted

and centered in a different bin allows not only the training

to be more robust but also the real-time test to take less time

to start providing the correct result. That is, spikes from the

NAS do not need to propagate through many populations to be

classified correctly since the network was trained to recognize

that the important information of the speech command could

also appear in the first bins (which correspond to the first

populations) instead of just in the middle section of the

sonogram.

VI. CONCLUSIONS

In this work, the authors have presented a novel mechanism

for training time series offline and testing them later in real

time in a Spiking Convolutional Neural Network with the

information obtained from the live output of a Neuromorphic

Auditory Sensor.

The results obtained in this work prove that almost the

same accuracy results (1% less in this case) can be achieved

when testing a deep Spiking Neural Network using the weights

obtained from a previously trained Convolutional Neural

Network with spike-rate based images, which is a novelty for

time-dependent signals like audio signals.

A database with 4720 ”left” and ”right” speech commands

from the Speech Commands Dataset was used to generate

141726 sonogram images with the spiking information ob-

tained from a neuromorphic cochlea (NAS). These images

were later used for training and testing the system, achieving

an accuracy result of 89.90% when simulating and deploying

the network in the SpiNNaker hardware platform.

The authors have also presented a novel SNN architecture

for audio samples classification in real time using the output

from a neuromorphic sensor as input to the network and

a buffering layer with delayed populations that adapts the

information from a real-time domain to a static domain, in

which the SNN is trained for. This approach could also be

used for processing time series or time-dependent signals with

SNNs in real time.

ACKNOWLEDGMENT

This work is supported by the Spanish government grant

(with support from the European Regional Development

Fund) COFNET (TEC2016-77785-P). The work of Juan P.

Dominguez-Morales was supported by a Formación de Per-

sonal Universitario Scholarship from the Spanish Ministry of

Education, Culture and Sport. Juan P. Dominguez-Morales and

Daniel Gutierrez-Galan would like to thank Simon Davidson,

Steve Furber and the whole APT group for their kindness and

constant help during their stay in Manchester.

REFERENCES

[1] R. S. Cooper, J. F. McElroy, W. Rolandi, D. Sanders, R. M. Ulmer,
and E. Peebles, “Personal virtual assistant,” Jun. 29 2004, uS Patent
6,757,362.

[2] G. G. Chowdhury, “Natural language processing,” Annual review of
information science and technology, vol. 37, no. 1, pp. 51–89, 2003.

[3] G. Gazdar and C. S. Mellish, Natural language processing in Lisp: An
introduction to computational linguistics. Addison-Wesley Wokingham,
England, 1989.

[4] X. Huang, A. Acero, H.-W. Hon, and R. Reddy, Spoken language
processing: A guide to theory, algorithm, and system development.
Prentice hall PTR Upper Saddle River, 2001, vol. 95.

[5] S. Furui, “Speaker-independent isolated word recognition using dynamic
features of speech spectrum,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 34, no. 1, pp. 52–59, 1986.

[6] G. Williams and S. Renals, “Confidence measures for hybrid
HMM/ANN speech recognition.” 1997.

[7] P. McGuire, J. Fritsch, J. J. Steil, F. Rothling, G. A. Fink, S. Wachsmuth,
G. Sagerer, and H. Ritter, “Multi-modal human-machine communication
for instructing robot grasping tasks,” in Intelligent Robots and Systems,
2002. IEEE/RSJ International Conference on, vol. 2. IEEE, 2002, pp.
1082–1088.

[8] O. Russakovsky, L.-J. Li, and L. Fei-Fei, “Best of both worlds: human-
machine collaboration for object annotation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp.
2121–2131.

[9] R. Collobert, C. Puhrsch, and G. Synnaeve, “Wav2letter: an end-
to-end convnet-based speech recognition system,” arXiv preprint
arXiv:1609.03193, 2016.

[10] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A gener-
ative model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[11] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with
the Marquardt algorithm,” IEEE transactions on Neural Networks, vol. 5,
no. 6, pp. 989–993, 1994.

[12] E. Painkras, L. A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson,
D. R. Lester, A. D. Brown, and S. B. Furber, “SpiNNaker: A 1-W 18-
core system-on-chip for massively-parallel neural network simulation,”
IEEE Journal of Solid-State Circuits, vol. 48, no. 8, pp. 1943–1953,
2013.

[13] P. U. Diehl and M. Cook, “Efficient implementation of STDP rules on
SpiNNaker neuromorphic hardware,” in Neural Networks (IJCNN), 2014
International Joint Conference on. IEEE, 2014, pp. 4288–4295.

[14] T. Iakymchuk, A. Rosado-Muñoz, J. F. Guerrero-Martı́nez, M. Bataller-
Mompeán, and J. V. Francés-Vı́llora, “Simplified spiking neural network
architecture and STDP learning algorithm applied to image classifica-
tion,” EURASIP Journal on Image and Video Processing, vol. 2015,
no. 1, p. 4, 2015.

[15] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier,
“STDP-based spiking deep neural networks for object recognition,”
arXiv preprint arXiv:1611.01421, 2016.

[16] J. P. Dominguez-Morales, A. Jimenez-Fernandez, A. Rios-Navarro,
E. Cerezuela-Escudero, D. Gutierrez-Galan, M. J. Dominguez-Morales,
and G. Jimenez-Moreno, “Multilayer spiking neural network for audio
samples classification using SpiNNaker,” in International Conference on
Artificial Neural Networks. Springer, 2016, pp. 45–53.

[17] Z. Hu, T. Wang, and X. Hu, “An STDP-based supervised learning
algorithm for spiking neural networks,” in International Conference on
Neural Information Processing. Springer, 2017, pp. 92–100.

[18] T. Moraitis, A. Sebastian, I. Boybat, M. Le Gallo, T. Tuma, and
E. Eleftheriou, “Fatiguing STDP: Learning from spike-timing codes
in the presence of rate codes,” in Neural Networks (IJCNN), 2017
International Joint Conference on. IEEE, 2017, pp. 1823–1830.

[19] N. Pavlidis, O. Tasoulis, V. P. Plagianakos, G. Nikiforidis, and M. Vra-
hatis, “Spiking neural network training using evolutionary algorithms,”
in Neural Networks, 2005. IJCNN’05. Proceedings. 2005 IEEE Interna-
tional Joint Conference on, vol. 4. IEEE, 2005, pp. 2190–2194.

[20] Q. Liu and S. Furber, “Noisy Softplus: A biology inspired acti-
vation function,” in International Conference on Neural Information
Processing. Springer, 2016, pp. 405–412.

[21] C. Farabet, R. Paz, J. Perez-Carrasco, C. Zamarreo, A. Linares-
Barranco, Y. LeCun, E. Culurciello, T. Serrano-Gotarredona, and
B. Linares-Barranco, “Comparison between frame-constrained fix-
pixel-value and frame-free spiking-dynamic-pixel convnets for visual
processing,” Frontiers in Neuroscience, vol. 6, p. 32, 2012. [Online].
Available: https://www.frontiersin.org/article/10.3389/fnins.2012.00032

[22] F. Perez-Peña, J. A. Leñero-Bardallo, A. Linares-Barranco, and
E. Chicca, “Towards bioinspired close-loop local motor control: A sim-
ulated approach supporting neuromorphic implementations,” in Circuits
and Systems (ISCAS), 2017 IEEE International Symposium on. IEEE,
2017, pp. 1–4.

[23] A. Jiménez-Fernández, E. Cerezuela-Escudero, L. Miró-Amarante,
M. J. Domı́nguez-Morales, F. de Ası́s Gómez-Rodrı́guez, A. Linares-
Barranco, and G. Jiménez-Moreno, “A binaural neuromorphic auditory
sensor for FPGA: a spike signal processing approach,” IEEE transac-
tions on neural networks and learning systems, vol. 28, no. 4, pp. 804–
818, 2017.

[24] S.-C. Liu, A. Van Schaik, B. A. Mincti, and T. Delbruck, “Event-based
64-channel binaural silicon cochlea with Q enhancement mechanisms,”
in Circuits and Systems (ISCAS), Proceedings of 2010 IEEE Interna-
tional Symposium on. IEEE, 2010, pp. 2027–2030.

[25] B. Wen and K. Boahen, “A silicon cochlea with active coupling,” IEEE
transactions on biomedical circuits and systems, vol. 3, no. 6, pp. 444–
455, 2009.

[26] T. J. Hamilton, C. Jin, A. van Schaik, and J. Tapson, “An active 2-D
silicon cochlea,” IEEE Transactions on biomedical circuits and systems,
vol. 2, no. 1, pp. 30–43, 2008.

[27] C. D. Summerfield and R. F. Lyon, “ASIC implementation of the Lyon
cochlea model,” in Acoustics, Speech, and Signal Processing, 1992.
ICASSP-92., 1992 IEEE International Conference on, vol. 5. IEEE,
1992, pp. 673–676.

[28] A. Mishra and A. E. Hubbard, “A cochlear filter implemented with
a field-programmable gate array,” IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing, vol. 49, no. 1, pp.
54–60, 2002.

[29] M.-P. Leong, C. T. Jin, and P. H. Leong, “An FPGA-based electronic
cochlea,” EURASIP Journal on Applied Signal Processing, vol. 2003,
pp. 629–638, 2003.

[30] I. Gambin, I. Grech, O. Casha, E. Gatt, and J. Micallef, “Digital cochlea
model implementation using Xilinx XC3S500E spartan-3E FPGA,” in
Electronics, Circuits, and Systems (ICECS), 2010 17th IEEE Interna-
tional Conference on. IEEE, 2010, pp. 946–949.

[31] The Adress-Event Representation communication protocol. [Online].
Available: https://www.ini.uzh.ch/ amw/scx/std002.pdf

[32] L. Plana, J. Heathcote, J. Pepper, S. Davidson, J. Garside, S. Temple,
and S. Furber, “spI/O: A library of FPGA designs and reusable modules
for I/O in SpiNNaker systems.”

[33] R. Berner, T. Delbruck, A. Civit-Balcells, and A. Linares-Barranco, “A 5
Meps $100 USB2.0 address-event monitor-sequencer interface,” in 2007
IEEE International Symposium on Circuits and Systems. IEEE, 2007,
pp. 2451–2454.

[34] T. Iakymchuk, A. Rosado, T. Serrano-Gotarredona, B. Linares-Barranco,
A. Jimenez-Fernandez, A. Linares-Barranco, and G. Jimenez-Moreno,
“An AER handshake-less modular infrastructure PCB with x8 2.5
Gbps LVDS serial links,” in Circuits and Systems (ISCAS), 2014 IEEE
International Symposium on. IEEE, 2014, pp. 1556–1559.

[35] J. P. Dominguez-Morales, A. Jimenez-Fernandez, M. Dominguez-
Morales, and G. Jimenez-Moreno, “NAVIS: Neuromorphic Auditory
VISualizer tool,” Neurocomputing, vol. 237, pp. 418–422, 2017.

[36] Q. Liu, Y. Chen, and S. Furber, “Noisy Softplus: an activation
function that enables SNNs to be trained as ANNs,” arXiv preprint
arXiv:1706.03609, 2017.

[37] J. P. Dominguez-Morales, A. Rios-Navarro, D. Gutierrez-Galan,
R. Tapiador-Morales, A. Jimenez-Fernandez, E. Cerezuela-Escudero,
M. Dominguez-Morales, and A. Linares-Barranco, “Live demonstration-
multilayer spiking neural network for audio samples classification using
SpiNNaker,” in Circuits and Systems (ISCAS), 2017 IEEE International
Symposium on. IEEE, 2017, pp. 1–1.

[38] J. P. Dominguez-Morales, A. F. Jimenez-Fernandez, M. J. Dominguez-
Morales, and G. Jimenez-Moreno, “Deep neural networks for the
recognition and classification of heart murmurs using neuromorphic au-

ditory sensors,” IEEE Transactions on Biomedical Circuits and Systems,
vol. 12, no. 1, pp. 24–34, Feb 2018.

