3,414,311 research outputs found

    Discovering Network Structure Beyond Communities

    Get PDF
    To understand the formation, evolution, and function of complex systems, it is crucial to understand the internal organization of their interaction networks. Partly due to the impossibility of visualizing large complex networks, resolving network structure remains a challenging problem. Here we overcome this difficulty by combining the visual pattern recognition ability of humans with the high processing speed of computers to develop an exploratory method for discovering groups of nodes characterized by common network properties, including but not limited to communities of densely connected nodes. Without any prior information about the nature of the groups, the method simultaneously identifies the number of groups, the group assignment, and the properties that define these groups. The results of applying our method to real networks suggest the possibility that most group structures lurk undiscovered in the fast-growing inventory of social, biological, and technological networks of scientific interest.Comment: Software implementing the method described in the paper is available at http://purl.oclc.org/net/find_structural_groups and is accompanied by a demo video available at http://www.nature.com/srep/2011/111109/srep00151/extref/srep00151-s2.mo

    Inequality and Network Structure

    Get PDF
    This paper explores the manner in which the structure of a social network constrains the level of inequality that can be sustained among its members. We assume that any distribution of value across the network must be stable with respect to coalitional deviations, and that players can form a deviating coalition only if they constitute a clique in the network. We show that if the network is bipartite, there is a unique stable payoff distribution that is maximally unequal in that it does not Lorenz dominate any other stable distribution. We obtain a complete ordering of the class of bipartite networks and show that those with larger maximum independent sets can sustain greater levels of inequality. The intuition behind this result is that networks with larger maximum independent sets are more sparse and hence offer fewer opportunities for coalitional deviations. We also demonstrate that standard centrality measures do not consistently predict inequality. We extend our framework by allowing a group of players to deviate if they are all within distance k of each other, and show that the ranking of networks by the extent of extremal inequality is not invariant in k.inequality;networks;coalitional deviations;power;centrality

    Confidence sets for network structure

    Full text link
    Latent variable models are frequently used to identify structure in dichotomous network data, in part because they give rise to a Bernoulli product likelihood that is both well understood and consistent with the notion of exchangeable random graphs. In this article we propose conservative confidence sets that hold with respect to these underlying Bernoulli parameters as a function of any given partition of network nodes, enabling us to assess estimates of 'residual' network structure, that is, structure that cannot be explained by known covariates and thus cannot be easily verified by manual inspection. We demonstrate the proposed methodology by analyzing student friendship networks from the National Longitudinal Survey of Adolescent Health that include race, gender, and school year as covariates. We employ a stochastic expectation-maximization algorithm to fit a logistic regression model that includes these explanatory variables as well as a latent stochastic blockmodel component and additional node-specific effects. Although maximum-likelihood estimates do not appear consistent in this context, we are able to evaluate confidence sets as a function of different blockmodel partitions, which enables us to qualitatively assess the significance of estimated residual network structure relative to a baseline, which models covariates but lacks block structure.Comment: 17 pages, 3 figures, 3 table
    corecore